. AD-A148 982 EVALUATION DF RUTDHRTED CONFIPURRTION HHNRGEHENT TOOLS 1/2
IN ADR PROGRAMMING. . (U)> AIR FORCE INST OF
WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI. M S ORNDORFF
UNCLASSIFIED MAR 84 AFIT/GCS/EE/84M-1 S5/1 NL

? ..' o. . .-‘_ ..‘_:l

P
¢ o
gz,f

‘:.?‘g

A Ay
R
o

Se
i

= 0el)
CE St

—
e’

T
m -

ECERE

Mmééééé mulﬁ4

|

binbe
R i
A
»f MICROCOPY RESOLUTION TEST CHART b
Yl NATIONAL BUREAU OF STANDARDS-1963-A

: »
et
"
it t
‘d:}j
1%

FRTW AN
iy

EVALUATION OF AUTOMATED
CONFIGURATION MANAGEMENT TOOLS IN
ADA PROGRAMMING SUPPORT ENVIRONMENTS

THESIS

Mark S. Orndorff
Captain, U.S. Army

AFIT/GCS/EE/84M-1

has been GPPtoved '

v e 51

LT R ond sl |
R wathadle Q\» MAY 1 5 1984
DEPARTMENT OF THE AIR FORCE 4
AIR UNIVERSITY (ATC) % A

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

84 05 14 113

......

PT' o
il

\

J

AFIT/GCS/EE/84M-~1

" EVALUATION OF AUTOMATED
CONFIGURATION MANAGEMENT TOOLS IN
ADA PROGRAMMING SUPPORT ENVIRONMENTS

THESIS .

¥ \“t“ngW

A0 28 B RN
Mark S. Orndorff |
Caztain, Ufg.oirmy @QELECTE i
AFIT/GCS/EE/84M-1 MAY 15184 ¢

A

Approved for public release; distribution unlimited.

f
%

,"ﬁn‘ - - B L e i i e A R o VL L P S
R
AN
)“.
» AFIT/GCS/EE/84M-1
A
N
P!
g EVALUATION OF
e
. AUTOMATED CONFIGURATION MANAGEMENT TOOLS
oy
7{ IN ADA PROGRAMMING SUPPORT ENVIRONMENTS
37
D
THESIS
a5
34
RN Presented to the Faculty of the School of Engineering
] of the Air Force Institute of Technology
d
X Air University

in Partial Fulfillment of the

Requirements for the Degree of

Master of Science L_A_cc_efssion For

NTIS GRA&I

PTIC TAB &

U worcunced ’
{S‘ Jastificatien |
¥ e E——
:\ | -
13 4 »D istritution/]
- Avaliladbiltity . 8
.‘, S R | *-~ - 7-4
4 Mark S. Orndorff, B.A. ey i';“'“] .
o Tl Spee L
g Captain, US Army A/ I !

3 March 1984

Y

o

A s Approved for public release; distribution unlimited.

)
o

57,

a vy
o

asae-o |4
.
s |

;

ad e Ve Ca® o™ L P " d e "a’ " mYa - . Ll &) - L W] LG S 8
ST S G A LG S LE RN DAL 1 VY N VIR IS A0, 1 T T I ST AT AT I,

L ,) o i . N . . >
P b L i Y G S o4 L ad Sl SO L SO I W N N S e T T a TN T Y e Tt e T e T T T T LT et et T

Preface

3
The Army has contracted with SofTech Incorporated to
develop the Ada Language System (ALS), which is the Army's
initial Ada Programming Support Environment. The Army
h contracted with the Air Force Avionics Laboratory to provide
':g independent evaluation of the ALS. During the Air Force's
E:ﬁ evaluation, the need arose for developing evaluation
; criteria for the complex task of configuration management.
¥: This need coupled with my desire to 1learn more about
gg configuration management and the Ada language program led to
:: the selection of this thesis topic.
-iﬁ I would 1like to thank my advisor, Major Michael R.
l%i Varrieur, for all the time and guidance he has given nme.
B qg, His ideas and suggestions during the course of the project
; were most helpful. I would also like to thank my thesis-
$5 committee members, Captain Patricia Lawlis and Doctor Henry
o Potoczny. Their suggestions and comments were very
jﬂ valuable.
,ﬁ Deep gratitude is also expressed to Mrs. Virginia Castor
;? of the System Avionics Division, Support Systems Branch, Air
§ : Force Wright Aeronautical Laboratories, who originally
5§ proposed this thesis topic and provided the necessary
;: resources and continuous guidance throughout the project.
N
zg Finally, I would like to thank my wife, Beth, for all
g% the support and encouragement she has given me.
- Mark S. Orndorff
RO
&Y ii
-

-

n .,'-”-‘ H “ ! TN ” ‘. ‘-t " 0 o .t‘ ‘ \q \-\‘\.‘.\' AT 1' % _, - $1' \~q ‘1'\\' W % e ® T L 0 ‘f\.‘~<‘_‘.'\.'_..“ b

bi ;gi Contents

5 Preface ¢ . ¢ ¢ ¢ i i v e e e e e e e e e e e i
33
“{3 List of Figures « v ¢ ¢ o o o o o o o o o « o o« ¥
L

List of Tables . . . « ¢« ¢« ¢ ¢ ¢ ¢ o &« o o o « o & o o« vi
Qq Abstract .. e £ 5 &
A
A
é; I. Introduction ¢ & ¢ ¢ ¢ ¢ ¢ ¢ e 4 e e u 1
o Background ¢« . . ¢ ¢ 0 e e o 0 e e e o 1
Q?
N The Ada Language Initiative

el

r
o
[EYh

2
Current Software Development Practices . . . 3
5
7

?k The Ada Program Support Environment (APSE)
' Configuration Management

Problem Statement ¢ + ¢« &« + 4+ & o . . 9
Scope e e e e e e e s 9
Summary of Current Knowledge

Standards ¢ ¢ .

SRR

¢ o o o
.
.
.
.
.
.
(o=
o

Q Approach e . . . 11
Y = Materials and Equipment 11
3%‘ - II. Configuration Management 12
M) The Navy's Software Life Cycle Model 12

Incremental Development 13
Early Prototyping T
Extended Correctness Analy31s e+ « « « o . 18
Management Integration 18

Management View of Configuration Management . . 19
Configuration Identification 21

Configuration Change Control 22
Configuration Status Accounting 26

Designer's View of Configuration Management . . 29

oy
fxﬁ Requirements Analysis Products 31

e Specification Products « . . . 32

u§1 Design Products . . T K

R Implementation Products e 1

%; 139

gt iii

oy

Eﬂ

R

R 39 VAP IS 150 KT S R A A0 S S RTTRIRE VR SR VORI A S o gy

R K SRy

% d gl M s e ok Rk gk P - T %" mT e "R TN - hAR B e R L I) * e LI I D L e .%o TN eta .\.'..'

L

o

¥
igﬂ III. Requirements Analysis « « « « . « . . . 36
Configuration Control Requirements 40

Partition Project Database 43

s

.
‘ Support Multiple Projects 43
Support Multiple Teams &7
R Provide Workspaces 48
% Support Hierarchical Project Structure . 49
o Provide Common Libraries 53

)
& Control Access Rights 53
Support Multiple Versions 55
N Support Multiple Targets 57
% Provide Traceability 59
o Maintain Baselines 60
é; Maintain Project Data 64
A Provide System Reliability 66
bod Maintain Object Attributes 68

Iv. Evaluation of the ALS ¢« ¢« ¢« « « « « . 15

SRR

G Introduction to the ALS e e « « « o 15

. ALS Support of Configuration Control P A

» The ALS Evaluation 82 :

j General Discussion« . . . B84 .
ALS Deficiencies « ¢« « + « . . . 85

ALS Strengths ¢« .+ 4+ + « . . . 88

V. Summary and Recommendations 92

P SUMMATY .« ¢ ¢ « &+ o + o ¢ o o o o o o o o o+« 92 !
33 RecommendationNs . . « « « o« & & o« « o o o« + « o« 95

&y Appendix b e v e e e e e e e e e e e e e e .99

Bibliography . . « v ¢ « v ¢« o « o ¢ s 0 4 4 e e oe . . 122

el DL

EA e
Y A Lo A

Y Jhé' v

iv

SSRGS

Y N I N A I LN _--.' N ""-‘-‘.‘-' 4 e e .-..-'._'..". LR ORI -._" (PN

A A N

A
o)
? ol List of Figures
d
. Figure Page
o
P 1 The APSE Structure « « « « « « o . . . 6
i 2 A Traditional Life Cycle Model 14
. 3 The Incremental Life Cycle Model 15
£y
k2 4 Structure of a Single Increment 16
; 5 Software Configuration Control 25
: 6 SADT A-0: Provide APSE 37
A,
7 SADT AO: Provide-CM-Support-Environment . . . 41
5 8 MAPSE Structure « « « « « « « o o o . 42
b 9 SADT Al: Provide_Configuration_Control . . . 44
¥
4 10 SADT All: Partition_Project_DB 45
11 Project Hierarchy 5l
o 12 User View . . . ¢ ¢ ¢ ¢« ¢ o 4 o o o« o o« « « « 52
g
b
J 13 SADT A2: Maintain_Project_Data 65
¥
X
3
b
3
%
&
¢
g
3
;
R
% Y
; 4R
" v

A P ORI Y S AL S P P PN P
L

.
fatlatel SO Y PRI A

e
LA W

o

-

N

:34 ‘:;‘:3 List of Tables

t;} Table Page
%% 1 Partition Requirements 46
.:% II Access Requirements 56
X I11 Version Requirements 58
é?j Iv Multiple Target Requirements 59
%ﬁ v Traceability Requirements 61
R VI Baseline Requirements 64
?2 VII Reliability Requirements 68
%; VIII Attribute Types 72
EE IX Attribute Requirements 74
\ﬁ X Partition Evaluation 100
By 4

A Support Multiple Projects 100
v C!D B Support Multiple Teams 100
ﬁ; C Provide Engineer Workspace 101
4 D Support Hierarchical Project Structure . 102
W E Provide Common Libraries 103
E§; XI Access Evaluation 104
E% A Support Default Set of Access Rights . . 104
?b B Allow User to Modify Access Rights . . . 104
fg C Allow Cogfiguration Manager to Create New

3:; Access Rights 105
%j XII Version Evaluation 106
'gs A Support Revisions 106
;%; B Support Variations 107
;f c Allow user-defined Defaults 108
t: vi

L
ST <

-

NP Sl

LA

-

LERE

&

2R

s o e
o ’._f‘_ & PN

el

A
% g e

[k

Y NN

R T A

L
i

%]

5%

-
-
-

N

[}
)

XIII

XIv

Xv

XVl

XVII

Multiple Targets Evaluation

A Group Modules by Target System

109
109

B Insure Consistency of Compiled and Linked

Objects . . . + ¢ ¢ & v o ¢« 4 4 e 4 e

C Allow Single Object to be Used on Multiple

Targets e e e e e
Traceability Evaluation
A Record Relationships Between Objects

B Retrieve Objects Based on Relation to
Other Objects «

Baseline Evaluation

A Maintain Fixed Reference Point
B Control Changes to Project Baseline
c Process Changes to Project Baselines

Reliability Evaluation . .

A Maintain Off-line Backup . .
B Maintain Off-line Supplementary Storage
C Maintain Derivation History

Attribute Evaluation

A Maintain Object Attributes
B Maintain Object Associations

C Support APSE Expansion

D Support Retrieval by Attribute Value

vii

-
P

109

110

111
111

. 111
112
112
113
114
115
115
116
117
118
118

119
120

121

O A AT S W AIN NI I NI,

o » 4 4 CA) M ~ gl ary - W, - i~y o
b 2 e i Sl e AR et Bind e SR I OO S L A L B B B A A AN A AL AL L LA AL LA SR L L N PN Y

N Abstract !

‘ This investigation studied the task of configuration

management of computer software systems. First, a detailed

definition of configuration management from the perspectives
of project management and project engineers was developed.

This definition was used to conduct a requirements analysis

S SR X]

of the support required in automated programming

~
4
5
o)
“
oY
ﬁ

environments for the configuration management task. Based

- on these requirements, evaluation criteria were developed

aca

My oy uay Sy

.
.
a

Ehat were appropriate for the evaluation of <configuration

.
a?

management tools designed to satisfy the 1980 Stoneman

requirements document. These evaluation criceria were used

L Oh X1

KR p
¥ 2 ¥ P 20 Y 4

to evaluate the November 1983 release of the Army's Ada

Q Language System.

The requirements and evaluation criteria developed in

Py e 2 0 4454

this thesis are designed to provide designers and purchasers
of Ada Programming Support Environments (APSE) with the
tools necessary to determine the effectiveness of an APSE

implementation in supporting the task of <configuration

JBSs ol)

management of large software projects developed for embedded

{ e
.

S W)

computer systems.

Al-\g2

v oo
aets Gty ek

-
\
b

L
A
‘

viii

G S E G &Y o€ N » S S e S IS P R I L T e .t atLe g s amw - ca
2 AVIZ T ONE T 2P 0 E WA AE N A, AR N RN GO LR G LS LN LY, CHH S E ST CR R ENERERESOREN UV A S % W)

” T TV? < .A.....wf?.'5.1
I RS S A R e D R N A e R A I N A AL A A A A A A A A R S A A A A AR AR R AR A

2
};i) I INTRODUCTION
;ﬂ_ This thesis will study the concept of automated confi-
;ig guration management systems as part of Ada Programming
_Eé Support Environments. Although all Ada programming
|) environments should include an automated configuration
f; manager, the Department of Defense requirements document,
E?% (Stoneman), does not specify the capabilities and char-
!‘: acteristics of the configuration management tool. This
i
) ?.d thesis will present a working definition of configuration
i
éf, management and a set of metrics for evaluation of
a;; configuration management tools produced for the Department
E%g of Defense.
¥ Background
- 0
:}‘ The complexity and cost of software developed for the
‘:ég DoD has increased dramatically over the last few years, with
AN
e more than half of the software costs associated with embed-
Té‘j ded computer systems (Wegner, 1980:408, Stuebing, 1980:10).
i : At the same time, attempts to create new systems using
@i} existing software components have increased the complexity
E;%, of the maintenance task. The Department of Defense has made
.2
bﬁgs several attempts at improving the quality and reducing the
T,
;fj development and maintenance costs of software systems.
Tj% In 1975, the DoD Common High Order Language program was
,\ﬁ initiated with the expressed goal of developing a high order
oo
fﬁf language for all DoD embedded computer systems. From the
50N -
y 1
L}
?'s:::'
<
¥

NI g e]
PRPRCAC N REAC P AL A ARSI AL I It

‘o ¥ u " ol "ot e N I N I R S TR VIR T “ NW .y
> %‘v\\\\' \-\-\ 'b.\ \._\.. K S

beginning, the use of this new language as a means of intro-
ducing effective software development and support environ-
ments was considered a major benefit of the program
(Stuebing, 1980:3).

The Ada Language Initiative. The DoD has developed a

standard programming language, Ada, which is currently in
the process of being adopted as the preferred language for
all DoD software projects. The DoD-wide use of Ada will
eventually reduce the cost of programmer training and allow
portability of programmers and programs (Buxton, 1980:67).
Thé major benefits from Ada result from Ada's
appropriateness to military applications, from the
portability of a machine independent language, from the
availability of software resulting from the acceptance of
Ada for non-military applications, as well as from the use
of Ada as a mechanism for introducing effective software
development and support environments for developing military
systems (Stuebing, 1980:3).

In support of this last benefit of the Ada program, the

DoD began a requirements analysis for a complete programming

support environment. After an analysis of current ©program-
ming support environments, the DoD published an initial
requirements document, called Pebbleman, in 1978. A second

version, called preliminary Stoneman, was published in 1979,

and a final requirements document was published in 1980.

D5V LA ARGSAATS O S THIA LR SIS ’".’x‘f.-.‘l.m.‘l&iu,".-;i;ﬁixl-.*Z{'Ls'.'};*Z‘;'L\;{-Lt{i{'-ﬁl':{-:-;-Z;z-}_'{-'-;~,‘..‘.-'£¢.Z-‘-‘_--.}'."--:~-;‘-'l‘-'l--."--l\-l‘.-l

The 1980 Stoneman document presents a model for Ada

(. - programming environments that will be used by designers of
,izg initial environments. The Stoneman design addresses the
bég problems associated with software development while
~ realizing the limitations of the current state of the art in
W
iﬁ programming environments. The Stoneman proposal calls for
j%f developing an open-ended environment that is initially
\ consistent with the state-of-the-art (and therefore
e
;Eé& immediately realizable), and supports easy expansion as new
,}2 capabilities become available. The software problems
;;J addressed by Stoneman will be presented in the following
E§§ section, and then the Stoneman proposal will be presented in
'E:-::‘. more detail.
Ny
. ‘!D Current Software Development Practices. The computers
'%% used for embedded systems often do not support software
3% development, thus the common practice has been to develop
e
: software on a host machine and perform the testing on a
T%g combination of simulators and the actual target machine.
lq%' This testing procedure results from the target system's
‘f? development occurring concurrently with the software
N
.:E: development. Testing of software developed for weapon
"
':2 systems often relies heavily on simulations due to the high
= cost of tests using the actual target system. While testing
;35 a software system, various changes occur in response to
L)
:%? errors detected during the testing process. These changes
'3
- ; will result in the introduction of new versions of <certain
rYe
o 3
ps
t

' a-~'- .,'-“

R A T NN

N Q.."\.“.

" Sy L] A T N (T v Wy W n e W T RS Pl > RO R . . - e
\'.‘-
N
NN
e
e
A
XN
N
?L: p components of the software system. The changed components
CYAY -é-
{ and other components related to the changed components must
IR A
Ry go through a re-compilation process. The programmer
e .
Ry currently performs this cycle manually, with the possibility
":"-
of introducing errors by failing to re-compile all dependent
A
A modules.
2.
g . .
07 During the life cycle of a software system, the soft-
v
. ware requirements often evolve to include development of
-
D several different versions for various modifications of the
SCA
A .
E{ original system. A project manager must maintain each of
)
e these versions throughout the life cycle of the system. The
L]
LS
Jf maintenance of each of these versions involves the possible
A
Y
28 s
NN introduction of new versions resulting from additional cor-
o,
Y
. ‘!h rections or revisions. The project manager often must re-
Yy *
sﬁh sort to managing this large amount of inter-related software
B
:& manually with his success depending on his own management
woRd
: ability. The cost of this maintenance often reaches as much
Y
o as 80 percent of the 1life cycle cost of the system
“w %
L% L i
- (Stuebing, 1980:10).
-' -
L The tools used to support the software life cycle gen-
o
) erally consist of a compiler, 1linker, and editor. The
W3
-ka development of special purpose tools for a specific project
: has not been coordinated to allow for the re-use of these
f \'
Catl) . .
o often expensive tools. These tools do not provide adequate
~l
h}3 support for the needs of long-term system maintenance.
¥ w
o
l. 4 ’I')
* "
:2ﬁ 4
”,
¥
s
l. .
S

L
.
a

{

.
&
;E . The Ada Program Support Environment (APSE). Stoneman
(%j ;Sb specifies the requirements for an Ada Programming Support
.25 Environment (APSE), with the approach of developing software
;s on a host system for use on one or more target systems. The
fx APSE requirements were designed to provide support for the
?i specific problems relating to development and 1long term
:E' maintenance of software for embedded systems.
- The APSE design goal was to reduce the redundant devel-
fﬁ opment of the tools used for the development of embedded
vé systems by providing a complete set of tools that will
2? support the entire software life cycle, including long term
ém maintenance and modification. Rather than produce specific
f standards for all features of all programming environments,
j CED the approach taken in Stoneman was to present a standard
‘\‘ structure based on four layers, as shown in figure 1, with a
‘ﬁ specified minimum set of tools required for all Ada program-
aﬂ ming environments.
%ﬁ The first layer, level O, consists only of the hardware
;g and host software. The second layer, level 1, is called the
;E Kernel Ada Program Support Environment (KAPSE). This layer
\? consists of the database, and communications and runtime
NS support functions. This layer provides a machine-indepen-
"
.j dent portability interface that will be standardized for all
E: Ada environments.
S; The third layer, 1level 2, is called the Minimal Ada
?* Program Support Environment (MAPSE). This layer consists of
\ (N)
R !

A
)

o, 1
o\ [
., q

",'\.-.'.'\;'.':'.'_‘.'.l$‘ (W '--.";.. .._-.\-.\. q;..‘-.\- W

A SENE ."._ o ._. ."‘-., -\'.\(._I-_...".. '.- .._.'.'. G ..'... R -_’.....- N S . - RN ..

KAPSE
functions

Figure 1. The APSE Structure (Stoneman, 1980:Figure 1.F)

a compiler, debugger, 1linker-loader, JCL interpreter and a
configuration management system. The MAPSE provides a
minimal set of tools, both necessary and sufficient for the
development anrd main ¢ -ce of Ada prngrams. The fourth
layer, level 3, is «1lled the Ada Program Support
Environment (APSE). This layer contains the extensions to

the MAPSE that provide support for particular applications

L2

AINORNIDNS

T R T T ey

or methodologies. This layered approach to an APSE should

e

B

v
»
e

provide the basis for the development of tools portable to
any Ada environment. The tools in the APSE must support the
initial software development and allow for future
enhancements and modifications of the developed software for
use on unpredicted future systems.

Initial Program Support Environments are currently
being developed separately for the Army and the Air Force.
The Army has released its Ada Language System (ALS) for

evaluation by the Air Force Avionics Laboratory. The Air

Force's Ada Integrated Environment (AIE) is still in the
development stage. These initial environments should repre-
sent the state-of-the-art in programming environments and
will become the basis for evaluation of future environments
developed for the DoD.

Configuration Management. Software Configuration Man-

agement is the discipline of identifying the functional and
physical characteristics of a computer software item at
discrete points in the software life <cycle to control
changes and maintain integrity. Configuration management
provides the means for program managers to predict the
impact of changes to computer software and to incorporate
changes in a timely manner,.

From a project manager's viewpoint, configuration man-

agement is a well defined discipline with specific contrac-

tual requirements. For purposes of defining a program sup-

Ny

&
S

. o wl
S o el 3

2

s Iy
c‘n‘.‘fn X

»a

Favs

A MRS

&5

[l ' LU
LA LA,

1

A
A

%%

port environment, configuration management takes a broader,
and less well specified, definition. Stoneman defines con-
figurations as different collections of objects in a project
brought together to form different groupings. These config-
urations consist of two types. First, some configurations
exist as consecutive releases with one being the result of
revisions of the other. Second, some groups of configura-
tions coexist, such as separate models, resulting from
various target systems or wuser requirements (Stuebing,
1980:24).

The configuration manager is the software development
tool that 1is involved in all activities related to the
creation, modification, retrieval, archiving, and generation
of all software items. The configuration manager may also
maintain various dependencies between modules that permit
automatic recompilation, regression testing, and other
features available in advanced programming environments. In
an integrated program support environment, the task of
configuration management may require the interaction of
several tools.

The Stoneman requirements document states that config-
uration control is a "crucial problem" and requires that all
APSE's include a configuration manager, but never defines
the features or capabilities of a configuration manager.
Although Stoneman establishes the need for some level of

automated support for configuration management, it does not

S SEVAAAVL SVE VL FARS AV AAS LY Y5 S0P VL SN 75 A 35 0 M et WO U

)

A Bl B IR A B bk B o BR Koo o n A b S S SN

PR I P T

ol SR e u e e

PSRN B A e K SO B o a s,

WEN XY S A WA WEY 1 AR ISR

3

specify the actual features or the method of implementation

for a configuration management tool.

Problem Statement

This thesis will study the literature on configuration
management systems and determine the characteristics of
contemporary configuration management systems. Detailed
evaluation criteria will be proposed. This information will
be used to evaluate the Army's Ada Language System. Rec-
ommendations for future modifications and enhancements of
the ALS will be presented. These recommendations will be
useful in the design and development of future APSE's
developed for the DoD. This study is an initial attempt at
evaluating modern programming environments. This effort
will become a part of the Avionics Laboratory's overall
evaluation of the ALS. The methods developed in this thesis
will be useful for the development and evaluation of future
APSE's by the DoD.

Scope

This thesis will study the discipline of configuration
management of software systems. All features of the Army's
Ada Language System related to the task of configuration
management will be studied and evaluated. The Configuration
Management System will be studied in the following areas:
(a) partitioning the project workspace, (b) user defined

access control authorization to configuration elements, (c)

PRSI I VNN I L N LA, TR

o,

-‘\-'_n.u < - \"q:q.\-_-

SUARS SRR LSRR |

—————— .ﬁ.—--_v.r“]

o
\Q
ey
258
.\ N
“~$‘
g configuration management of versions and revisions, (d)
1999 P
¢ ASAY
. i configuration management of multiple-target systems, (e)
A
;q: identification and maintenance of baseline products, (g)
'5Q archive and restoration procedures for configuration
\':\
- elements.
w2
> Summary of Current Knowledge
X
N Several systems have been developed for automating
= support of software development. The systems currently
oy
)
:‘ developed do not represent a complete set of tools for
Y
:f weapons systems, but will provide a basis for comparison for
¥
s the features common to the ALS.
108
% N Standards
N —_—
N
. : There are currently no standards for evaluating the
& A
a:’ performance of a software development support activity. The
- v
.’:‘i
;1 development of evaluation standards is a major objective of
200
;% this thesis and will be based on methods proposed in the
literature.
N
sy The final Stoneman document specifies general require-
‘ I
%3 ments, but does not present evaluation criteria. As the j
t
. development of programming environments continues, the DoD
)
~{j must have a set of metrics to determine if these environ-
:: ments actually meet the Stoneman requirements and the needs
o of a programming team. There has not been any comprehensive
,
’
)
ﬁp‘ study to evaluate the state-of-the-art for programming
",
~
'f‘ environments and propose specific requirements to be eval-
.~ uated and the criteria for their evaluation.
AN o
* \4':.'
) 10
204
g
=l
C}
-

\‘ - q~' - q\. PSS TS \' ~'\n ‘q‘~o'.'. NN N, .

o
.
’
v
v
1
.
/
.l
‘
l
»
L]
f;
P
o
7
n
[
.
s
»
’
.
-
y
.
.
L/
’
.
B
L
[
’
4
3
v
13
'
13
'
.
L]
r

S
. &
D

. Approach
2% The first step of this study will be to define config-
”
i% uration management. Next, the areas that need to be
)
evaluated will be identified and described. Once
f: appropriate criteria are developed, they will be documented
<3 and presented to the sponsoring agency for approval. Once
) an approved set of evaluation criteria is completed, the
o Army's Ada Language System will be evaluated and the results
}
f presented. The evaluation criteria and the actual
) evaluation will be given to the sponsoring agency for use in
5
jf‘ their evaluation of the ALS.
o
1@: Materials and Equipment
.; ‘g. Access to the Ada Language System hosted on the AVSAIL
;] VAX-11/780 is required and will be provided. Appropriate
Y reference material is also available.
.
3
5
b
‘\
3
L
",
L
ﬁé
A
<
53
éi
LTINS
.t LA
b, o
‘0
; : 11
\
L
Y I
N I P A N N N P e LG B R R L G G G AL S AT, LG S RN AR o, e A B4 Y

“»
"/‘
v)y,

4

y II1 Configuration Management)

The definition of configuration management given in the

. - .
s t.%a%a%"

introduction to this thesis gives a broad overview of the

discipline of configuration management without specifying

AT N

o
3

those actions that must be taken by various members of a

L

software development team to accomplish the task of config-

uration management. In this chapter, a life cycle model

i i dp

proposed by the Navy (Dept of the Navy, 1982) will be used

5.

to study the specific actions that must be taken to achieve

effective configuration management. After reviewing the <
Al

A X 5

life cycle model, the management requirements will be \

= e v

reviewed as specified in current regulations and military

W g
Y

I
ql) standards. This section will summarize the responsibilities X

of the software development discipline formally 1labelled

LCr i

configuration management. Next, the activities of the other

¥

e,

members of the software development team will be studied to

determine their requirements for a software development

e 48 .6 &

¥

environment that supports incrementally developed computer

software.

o 5T A

The Navy's Software Life Cycle Model .

The Navy sponsored a program to develop a software

i

o, engineering environment that would provide a DoD-wide K
standard for a software engineering environment. The :

- fundamental requirements for this environment were to (1)

&

P,

12

L Arp
.

"i
‘

Y

.
.
8
AT T I T T T o A P S ST S .’._-_‘-_.'-r
UL NS SR AR N S P DO TR L T o WA, P OB

7 o ld W Y

X

A RS AL T

»

R

’

o 53 - - .~ -~
AL XA r ! A A A AR

oy

8)

g
e
T
I

t

I

support the entire life cycle, (2) be methodology driven,

(3) provide some type of support for existing projects.

In the preliminary work of this project, various 1life
cycle models were studied to determine a basis for the
development of the environment. The Navy study concluded
that 1life cycle models currently used by the Navy (see
figure 2) did not ©provide an adequate model for the
continuing evolution of software from the time of the first
release to the time when the last existing version of the
software system is retired.

The Navy's research team determined that a new model
for the software 1life cycle must be developed before a
software engineering methodology could be developed and an
environment standardized. The proposed life cycle model is
based on four fundamental ideas: incremental development,
early prototyping, extended correctness analysis, and
management integration.

Incremental development. The major deviation from more

traditional life cycle models in the Navy's proposal is the
concept of incremental development. The idea of incremental
development is based on the development of a software system
in small, manageable increments, with each new increment

treated as a new system with additional functions over its

predecessor (see figure 3). Each increment is subject to
phases similar to the traditional 1life cycle model
13

e s e O N I T D D TN

]
1

Requiremants
Functionsl Design
Detsil Design
Code and Unit Test
{ntegration
Systam Test
o
Msintsnance
Time 4—’

Figure 2. A Traditional Life Cycle Model (Dept of the Navy,
1982:1-5)
(requirements analysis, specification, design,
implementation), (see figure 4).

The incremental approach to software development
provides efficient management of changes in response to
evolving requirements. The incremental model addresses the

crucial issue of evolving software without resorting to the

- e - - .
At b et e e e At b ek At I et RO A AL AR AL R A R RACRL JER R

g
< — _
e
», !
4l Managament > 4
i { S — 4 i
‘ .'»-?:‘i . R
{ Correctness Analysis > :
. - r 4
." R]
N]
."' y
~: y
N Requirernents Analysis ¢
. \
a9 Specification : .
> .
~' 1
Design ‘
¥ ’
3 :
o~ (®
& ’
«* o
% {ncrement
. ol
» -
X} Relesse o1 .
-
N, -
B Increment
o2

Increment
KEY: o3

i

Life Cvcle Activity . ®

e SN
..
B "D s "y >

Incremy -
g R

-

A PR 220 L
|/_§
-

Oevelooment Phase Continuing Adaotat:on Phase

] o gl . .

V'S
Denivery of Reease ! ¢

vy %

Figure 3. The Incremental Life Cycle Model (Dept of the
Navy, 1982:1-10)

[BP 7.

Ml
Y

e e v 7y

v

YA A AL Tt '."~."\'\"-.‘-."\",'.'}."\‘ B e VAT i BT LGRS CY

Managsment

increment
Requiremeants Analysis
4 Increment
Specification
* increment
Design
[
1
Increment
implementation
y
Correctness Analysis
Figure 4. Structure of a Single Increment (Dept of the

Navy, 1982:1-11)

umbrella phase labelled "maintenance"” in the traditional

life cycle model (see figure 2). This single maintenance
phase covered the large majority of time, cost, and problems
in software projects developed under the traditional life
cycle model. The _traditional life cycle model did not

provide guidance for the activities necessary for insuring

efficient maintenance of the software product.

16

e AL NN \'_'\".\'_\'_\“_'."‘_\:_\'

T e

The incremental development model provides excellent
support for the concepts of configuration management. The
configuration management concept of baselines, referring to
a reference point or plateau in the development of a system
(Berrsoff, 1979:98), can be mapped directly into the
incremental model. This mapping provides a logical
relationship between management products and design
products.

Early Prototyping. The second fundamental idea of the

Navy's model is the need for early prototyping. Early

prototyping calls for the development of increments of the

software system that satisfy a small portion of the
requirements, but are available for testing and evaluation
early in the project development. The cost of correcting

errors 1in software system is much less if these errors are
detected early in the development. Early prototypes provide
a means for identifying errors in requirements and
specification early in the development and therefore greatly

reduce the cost of corrections.

Early prototyping provides for verification and
validation activities early in the development process, to
include possible interaction with the intended users. I11-

defined or misunderstood requirements can be identified and
further clarified for use in developing the next increment.
This application of the incremental approach places

additional responsibility on the configuration manager by

17

SRR QUM S LCAIEA MUACAUMEMENE MCMER WO AUIOM SO e RECE GG

‘fQ requiring the development of what is currently viewed as a
~~ complete life cycle set of configuration management products
EE during the production of these early prototypes. These
;5 initial products are placed under configuration management
s control with later increments managed by repeatedly stepping
Eé through the modified traditional 1life <cycle model, as
E% required for incremental development.

Extended Correctness Analysis. The next concept

.y considered in the Navy's model was extended correctness

: analysis. Traditional 1life cycle models have considered :

X testing as a single phase in the life cycle, performed after

? coding 1is complete (see figure 2). This practice leads to

late identification of errors and costly corrections. Even

qg; in the incremental model, with this type of testing possible

v: after coding of the first prototype, errors are ignored

longer than necessary and costs are increased. For this

¥ reason, the Navy's model calls for on-going verification and
L2

ﬁ: validation throughout the life cycle (see figure 3).

; The practice of extended correctness analysis will

‘. require extensive information from the configuration manager

i? to be able to track requirements through to specification,
-
.

design, and implementation so that verification and

validation can be accomplished.

;‘ Management Integration,. The 1last main concept
N considered in the Navy's analysis was management
. integration. Previous life cycle models have not addressed

18

AN A LA A LT e)
N " .\ ‘l' \ --\-L."L_L';_AASAJ‘._; .L.A.A‘L..A._L.AA_A..I

L}
'
.‘-

g
FAran

AL
ot

; L)

PRELINEAT AL

Aan

RIS W W -

-

L“.J‘:ﬁ‘

JSURIUSFL W

4 .
L

222"

W hte e

‘r‘l‘

U
.

the role of management in the software development process.
This new model <considers management as an ever-present
activity requiring data (e.g. frequency of error reports,
average time to detection) and directing activity (see
figure 3). This view of management will rely on information
available from the configuration manager, and management
direction will determine the structure of future
configurations.

This concept of management control throughout the life
cycle requires control over the products of each activity
within each increment of the life cycle. This control is
achieved by creation of baselines with changes to a baseline
controlled by the configuration manager, under the direction
of management. A formal change control process must be
managed including the tracking of various changes through
the stages of approval and implementation. This tracking of

changes is the responsibility of the configuration manager.

Management View of Configuration Management

From a project manager's perspective, software
configuration management is the discipline of identifying

the functional and physical characteristics of a computer

software item, at contractually specified points in the
software 1life <cycle, to control <changes and maintain
integrity. Configuration management provides the means for

program managers to predict the impact of <changes to

19

R et

a o 'mtu .
ORI L

. - C P - - - ‘e . " .
RN D S A)
PRI LA, W OEF. . VEDUEIFOE . "2

RO

wlatnY

- ..-
PRGN

i:} computer software and to incorporate changes in a timely
{ manner.
EE For the purposes of software configuration management,
b
3: the terms computer software item and computer program
Y
configuration item (CPCI) both refer to any collection of
%? computer software that satisfies an end-use function and is
jé% designated by the contractor for configuration management.
j ‘ Individual configuration items consist of a group of
ns
;§ computer program components (CPC).
%]
;% Throughout a system life cycle, configuration items are
L: defined, developed and modified based on user requirements
~ﬁs and concurrent system developments (e.g. changes in hardware
Wt
%§ design may cause extensive changes in the software design).
\‘ ‘q& The 1likelihood of a given function to change determines the
%g - best method of implementation. Since software changes cost
_i; considerably less than hardware changes, a function that may
: change, either during development or after the first
{:: release, often requires a software implementation. Because
e
,ﬁ of the highly changeable nature of software products,
et
f: software development requires special management practices
;é to monitor the development of a software system, and keep
Ez track of the historic evolution of current systems, The
N
o\ discipline called configuration management handles the
:?E problem of managing software development.
Eé Configuration management must provide the program
O manager with the information to determine the impact of
e)
.,
ig 20
*
X *

T N e N e G R P
SO AT IR AT A PRI TA Y2, o 2, Y

2

:§ R0 proposed changes in system hardware and software on the
S ASY

{ software development, and to incorporate these changes in an
;; expeditious manner. Within configuration management,

-'S configuration identification, configuration change control,
: and configuration status accounting work together to achieve
i: the stated goals.

-,

5:& Configuration Identification. Configuration
\.. identification describes the functional and physical

'33 characteristics of configuration items and CPC's. From

j%j these characteristics, configuration identification provides
5]

; information on the internal composition of a configuration

53 item so that managers can quickly determine what affect
‘5 proposed changes will have on individual system components.
-

" a Tracking specific requirements with the configuration items
;i) that implement them, provides the means for tracing

;i requirement changes through the system. Configuration
= identification is accomplished by a series of reports

f:; representing progressively finer levels of detail of the

b

.:: system design.

A

- The first report maintained by the <configuration
EE manager 1is the System Performance and Design Requirements.

j;; This document represents the procurring activity's

s
A

definition of the product to be produced, giving detailed

ZAPYR[

Lo

specifications of the function, reliability requirements,

maintenance and support needs, and the environment in which 1

the product will operate (McCarthy, 1980:44).

FEEAS)
s }
-
2 21

Z
2 T

R -

a¥ee e L &

AL

e
-~ .

NN |- 45 S

¥

vy,

.;)‘

The next report, prepared by the developing
organization, is the Computer Program Development
Specification (Part I or Type B5). This document includes

the general information flow presented in a block diagram,
interface requirements, an expandability plan, a test plan,
and a reliability plan (McCarthy, 1980:45). The Part 1
specification is the procurring activity's key contractual
compliance instrument to govern computer program acquisition
(Searle, 1977:40).

The third report maintained wunder configuration
management control is the Computer Program Product
Specification (Part II or Type C5). This document provides
a complete description of each computer program giving the
function of each module, the global data characteristics and
the impact of each module on the global data, and a
description of the input and output of each module. This
document is placed under configuration management control
after it is approved.

Configuration Change Control. Configuration change

control provides the capability for processing changes to
the software system. By classifying changes and monitoring
resource requirements, change control provides the
capability for change tracking and traceability. At the CPC
level, change control includes the identification of all
CPC's affected by a change to a given CPC. This information

determines the testing requirements for changed modules.

22

i z_‘..'.‘-\.. .“.‘.._.\..$..‘ - .‘\d‘\‘ g .~..\q._.- TN _.-._‘-...:\..\q “--...._'- _'-.\: e \:.\q Y

| SN

(A LIRS

v POV

8

-
.
()
Pt
.
3
-

" V9 % 5 =0 THF ATV T E VT AR TR TR TS
o e te teT Y, - i N AL Dl R L S R TS N A SN P gl e R A i i

“
2
l‘.‘
i
Al
)
X
W
:: o For purposes of configuration management, proposed
TN
{ changes are classified as either Class I or Class II. Since
;T the processing requirements differ between these two classes
~ k
N of changes, they will be discussed briefly to point out the 1
products and relations that must be handled by the ?
- + .
o configuration manager. f
j§ A change is designated as Class I if it affects a]
X p
. technical requirement from the Part I specification, the
. .
v contract schedule, or costs (Searle, 1977:57). Other
> -
changes that affect CPCI performance or external interfaces i
; are also classified as Class I. Class I changes are more ;
o, K
g closely managed than Class II and must be formally proposed -
O .
»: by the contractor and approved by the procuring activity. K
N ‘[, The wuse of Class I changes for refining the requirements i
- N
j specification has always been encouraged, but the Navy's \
) y
\ life cycle model relies on Class I changes to requirements]
&
as the principle means of evolving the system's requirements
‘I‘ -
! through the incremental development process. These changes 5
may result in the specification of the next successive
h increment (and eventually baseline) or may <call for the
s .
LS . . .
- introduction of an increment developed in parallel with N
N :
= other increments (e.g. the development of a version enhanced
" I‘
< for a particular application). 1In either case, the proposed
'y \
:3 change must ©pass through an approval cycle and either be K
w5 [N
:ﬁ filed, if disapproved, or implemented as a new increment, if .
W
T
-l
A
'\: \j}‘ :
N) 23 X
v -
?
[N
-"

w 5

*\-“v \ $'.-.. ~- s LY \ . .‘-‘ - N --.;..\ .._'... ...- o ._-.“- - j'.':'-' RSN \- \.,\-.\:\-'\w...-._.-'.'- - - -‘ . _.v ~ \‘.\"-‘ -.\n"\h‘\-:\u‘-..

approved (see figure 5). This process is the responsibility
of the configuration manager.

Class I <changes are proposed using two forms: the '

engineering change proposal, and the specification change

notice. The use of these forms is explained in MIL-STD-480

i
and MIL-STD-490 respectively. A system to automate change
processing, based on the use of system stored standard

forms, has been developed by General Electric (Zucker,

1983). A configuration management tool similar to the one

developed at General Electric would provide a means for
integrating the change processing with the system
development without resorting to volumes of externally
stored documents. This also would allow the use of required
information from the change proposal documents during the
implementation of approved changes (e.g. automatically
tagging modules that require changes and monitoring progress
towards completing identified changes).

All changes that do not meet the criteria for Class I
changes are considered Class II. Class ITI changes can be

implemented by the contractor without approval from the

procurring activity, although the procurring activity must
be notified to insure agreement with the change
classification, By definition, Class II changes do not

propagate through more than one phase of the system 1life]
cycle. This characteristic permits simpler management, with

a one to one mapping between change proposal and affected

24

e R S S e R T T I T I L I . et e vt et .
A .uf-i}n'. l‘}ﬁ.\‘}n\‘-‘.‘-‘.\-\\.ﬂ AN, B I A A A AR

g .
4, A t
il

P
b &

v &
o
‘;':'fq'o

-

L]

o
<
»

TECHNICAL
DEFINITION

|
I
|
ARCMIVEJ

[S
CONFIGURATION .
CONTROL BOARD NO
CHANGE
CHANGE PROPOSAL - NENA
PRECIMTATION - PREPAARTEN £CP EVALUATE APPROVE? > '\a—Acu
vES

CHANGE PROPOSAL PROCESSING = CONF'GURATION CONTROL

r——t=—
] |
J)
NIER
. ' | cans INCORPORATION _ J :
, A) i
Figure 5. Software Configuration Control Cycle (Bersoff,
1979:8)
document (e.g. a single class II change implemented in a

single module of code).
An important category of Class II changes consists of

corrections to code between versions. A record of these

changes must be maintained for each configuration item. A

software engineering environment developed by SofTech

(Eanes, 1979) supports the concept of tracked revisions to

software componentsl' In this systen, each software

configuration tree (corresponding roughly to a CPCI) tracks

G454 &4 A Y N
b tats 4’.?\.":" [

>

*
o

% N &y
S -‘.‘L‘.t'l. y

-

o.'

'y

(i.'l..f .'uf".{ [

®)

.
SN

SRNN

.
atas

a

a s
«

&] eneKle

-
-

s

5%

2

changes to each component (corresponding to a CPC) with a

log file maintained automatically every time a change is
made. These log files for each configuration item satisfy
the requirement for identifying all Class II <changes
installed since the last version (Searle, 1977:72).

Configuration Status Accounting. Configuration status

accounting is the area of configuration management concerned
with insuring that the current state of the software system
accurately reflects the system specified in the baseline and
requirements documentation (Bersoff, 1979:12).
Configuration audits are the means for formally approving
design products and establishing baselines. During the life
cycle of a software system, five different reviews and
audits are conducted to monitor the software system.

First, a System Requirements Review is conducted after
completion of the draft system specification. Completion of

the System Requirements Review results in establishment of

the functional baseline. In this review, software/hardware
studies will be reviewed and functions allocated to
software. Verifiable performance measures will be

specified.

The next review is the System Design Review. Here the
draft development specification is reviewed. The allocation
of functions to <configuration items is checked for
completeness and the test plan is reviewed. The allocated

baseline is approved during this review.

26

L. PR DY LN

L - - * - . LY - . - . - L] P I
o L N P T AP a A A R R S LU T
. AL LA AL W ORI

el

AR

JATOARA,

Once the <contractor has completed the preliminary

design, the Preliminary Design Review is held. In this
review, the procurring activity evaluates the contractor's
preliminary design prior to beginning detailed design. All

interfaces between CPCI's are checked for consistency and
compatability.

After completion of the detailed design, a Critical
Design Review 1is held for each configuration item. The
detailed design is checked to insure that the requirements
specified in the Part I specification are met. This review
is the last check of the design prior to coding and testing.

After coding and testing is completed, a Functional
Configuration Audit is held to check the performance of each
configuration item against the Part I specification. All
test results are reviewed and each approved change is
checked to insure proper implementation in the system. The
draft Part II specification is reviewed for use in the

Physical Configuration Audit. All documentation and manuals

are reviewed for completeness.

Either after completion of the functional configuration
audit or in conjunction with it, a Physical Configuration
Audit is held to examine the "as built" configuration of
each configuration item. A product baseline is produced at
the completion of this final audit.

This series of reviews and audits represents a well-

tested method of monitoring a software development project.

27

¥ ﬁﬁm&m&a.&&&.&.&;. __3_ J:,k{_-_.A,--'-‘.s. ittt L‘ S 1.\ N 'FL'-;.‘

NN
at ;.‘

‘ n‘

\‘.\

okl Alnia

JEPET O TT IR IO)

Although based on the traditional life cycle model, these

reviews will still be required using the incremental model.
With incremental development, a means of maintaining many
revisions of the required documents will be necessary.
Also, an automated method for monitoring the changes between
increments would greatly assist in the processing of reviews
after the initial increment is completed. A system similar
to the SofTech system described above, that insures that all
changes will be listed in the log file would permit a
procurring activity to check this log file against the file
of approved changes to see that all changes have been
incorporated in all appropriate places in the system design.

The methods presented here are designed for initial
development and specifically address the communication
requirements between the contractor and the procurring
activity. Once the system is accepted by the procurring
activity, responsibility for incorporating further changes
often shifts from the contractor to the government agency
responsible for system maintenance. To achieve effective
project management, the government agency should continue to
use the incremental approach with the same series of
internal reviews and audits during the development of each
new version of the system. Only with careful control of all
changes throughout a system's life cycle will a software
maintenance activity be able to insure that changes are

properly implemented, tested and documented.

28

oot Sl

B Snde fon o Aii

PUPE T PR)

- . . - T T - - AL -l ous T S LAENEAC AR AT A LA LA EREACARAEAMAGAL |
N N - ~ - - » . . D L PR M T B R Y

o 3 0

L e Designer's View of Configuration Management

*g: Ada programming environments are intended to support
;gg large software projects. Large software projects assoc.ated
;it with embedded real-time applications are generally
o considered to have many of the following characteristics
:.:E:. (Howden, 1982:319):
:;: (1) Three to five year development time
& (2) $20 million development budget
FEE (3) 10 year system lifetime
25¢ (4) 70 programmers with 5 - 7 managers
iz{ (5) developed by external staff and contractors
?& (6) wunsophisticated users
:EE (7) 1 million lines of code
\'%é ‘gp (8) critical reliability
i%i (9) formal reviews conducted to evaluate whole
;Ei design.
]
i;f Working on such a project will be a variety of
B "
its personnel including analysts, programmers, user
§?’ representatives, industrial engineering personnel, testing
;jq personnel, and clerical and operations personnel (Howden
;t: 1982:319). Each of these groups of people will be using and
s
da creating various products during the system 1life <cycle.
E:% From the time development begins to the time the first
_Sﬁ baseline is established, and between later baselines, these
>3 products must be produced, controlled, and coordinated.
}3, 29

i e e 2" A AT M " " E " 2 "o " N" A" a”
a4

CaR's

WY

DA AR EVCRUUN I ot S A DAL R TS AL St N A A M e S R S

L
_s\:.'
el
o
AT
o .
.o The term configuration management is often wused to
(;) refer to the activities necessary to control these
, .'¢-’
R intermediate products of the software development. Although
AN
:i some confusion is likely to result from this extended use of
n1a
the term, this situation encourages the creation of an
N
#ﬁi integrated configuration management tool used for formal
o
tﬁ* configuration management as well as for —control of the
~a
\ intermediate products.
§$§ The concept of an Ada programming environment that will
1'%
Al eventually be capable of supporting the complete process of
Lty
A4 program design and evolution, as described in Stoneman
e La
o, . :
AN (Stoneman, 1980), implies the eventual development of a set
NN
P of tools supporting every member of the software development
o
2T
i ‘!b team. For the configuration manager, this means that a wide
SV . . .
,P variety of intermediate files will be produced during the
L]
N
e
N software development. These files will be produced by tools
)
, in the Ada environment and will often use other files,
o . . .
o already stored in the environment, as input. The
o
:;s dependencies resulting from this flow of data provide the
- J_‘-
)
. necessary information for insuring that all elements used in
o . .
e a configuration are current and consistent.
S
ﬂh The task of configuration management of intermediate
-, }‘
o
g products can be broken down into the following two steps:
.
o 3 First, identify the products that will be produced during
A) *.
¥
b . the software life cycle, and the methods and tools that will
e
o produce these products; and then determine the relationships
e)
.3,*3 2
e dy -
*
o

30

-
o 58

I
l‘l‘l

o4 4 5

L .'_':'l 4

% N

B

Y ,'i‘ I

I‘
At

et

LR

S
—
)
‘s

RN -
s

[y SN WS

."l’ " " .

‘4
‘e
§

-4 &

C kA
2 a0 0
"t‘v'.-.‘.
‘- ‘l ‘l.l PR

R

o d
»
s

AP S

'.
e
»
)
e
)
‘s

l..
o

and data necessary for insuring the <consistency and
correctness of these products. These two steps must be
considered for each phase of each increment of the
incremental life cycle model (requirements analysis,

specification, design, and implementation).

Requirements Analysis Products. The requirements

analysis phase 1leads to the construction of the System

Performance and Design Requirement =, During the
requirements analysis process, the computer system
specification, produced during system specification is
analyzed. This analysis must insure that all software

requirements specified in the system design are identified
and defined in terms suitable for software specification.
Requirements analysis is normally performed wusing a
semantic model such as Structured Analysis and Design
Technique (SADT), or Problem Statement Language (PSL)
(Howden, 1982:318). These models portray the requirements,
either graphically or through structured text, in a way that
produces the structure to be used in system specification.
The structure produced by the semantic model must be
captured by identifying the key terms, defining the terms,
and specifying the relations between these terms (Navy,
1983:1-10). These relations must he maintained by the
configuration management tool to allow traceability of

requirements.

31

LA A A AT I A SR A B A B S G Ae A A A A A AT AR R A A R s T '.h'_r'_h'p'1
P PO R L A L B L YL AP P P R . . N . - - - P T . - -” ata

- The configuration management tool must also support the
‘»*".
iterative development of the semantic model itself. This
includes providing a structured workspace for systems

analysis personnel that stores multiple versions of semantic
models. An individual systems analyst would be assigned a
protected workspace under the manager responsible for his
portion of the project. Within this workspace, the analyst
would be allowed to edit his design product and periodically
update the design version visible to other members of the
project development team.

Upon completion of the initial requirements analysis,
the configuration management tool will have control over the
contractually specified requirements documents, the products

@ of semantic modeling tools (graphic and/or textual) and a
database storing the relations created by the structure of
the software system. These products will be used in tracing
the requirements through the 1life <cycle and in the
processing of approved changes.

Specification Products. The specification phase of the

software system 1life «cycle leads to production of the
Computer Program Development Specification (Part I or Type
B5). This document must transform the requirements into a
precise description of the system's behavior in sufficient

detail to provide the only binding criteria for determining

b

the correctness of the developed system.

dd
.-;..‘J-‘.'

)

»

The specification process places few demands on the

32

.. e

- -, . « e
. . .. - -

I S IR e o E e ate I, T S L TEPU S SN R e T T e Sty . S e T AN
N e T e A e e T e T TN S et T e P S, O, R TR LR fl“u_g‘u'sj

7
. 4,
4

- 'QQC?“C‘
~ SRR R

AN
{I

e

e
%

£ A

PUAF R

'..l, 1) s
(R AN

“a
L
»
v
« ae s

%K

[y

A
4 \'.." -

K

(4
Sl

A

e

4
[y

a e .
“\."s."w.«

.'; M '»ﬂ
,(.

Y 3
s !
AP - A

X] i

O

v s .

..Q.

i

Ld

4, '\ L % &
R

¢

configuration manager. The products produced (interface
requirements, expandability plan, test plan, reliability
plan) are generally unstructured text that will be stored as
simple text files.,. These files will be organized based on
the structure developed during the requirements analysis
phase. A check for completeness will be possible by mapping

the requirements already stored in the environment to the

specifications. This mapping will produce the necessary
relations for tracing requirements to specifications.
Specification products will be produced in structured

workspaces as described for requirements products.

Design Products. The design process consists of

decomposition of the system into a hierarchy of pieces that
represent tte structure of the software systenm. The
hierarchic decomposition of the system produces pieces that
can each be further decomposed, independently, with clearly
defined interfaces.

A wide variety of design products and intermediate
products are possible depending on the design methodology
chosen and the tools available to assist the design process.
In all cases, a hierarchy must be produced in a machine
understandable form. This hierarchy determines the file
structure for the implementation phase. The software
requirements must be mapped to the hierarchy to permit

traceability.

33

T R A A O

Ad v, . _‘\.\Y‘;‘i ~ .‘ A ‘:“\‘ _‘. a2y 1;_“. A A V. “\ e _"i. ,.‘.__‘. _“ _‘._'\j.‘ .‘."‘—.‘“ A :\. e

ARES CREENE

-~ § L

P PPN

v"“,’ i
‘.

-

XN

W “:’-.ll:‘l.(k Iy

-

A

.

4

" LALLM TN,

PPN
LI I

y

- A

&;Hlv

1o

20k -

As in the previous phases of the software life cycle, a
structured workspace must be provided with access to the
appropriate tools and relations.

Implementation Products. The implementation phase of

the software life cycle has the greatest, and most clearly
defined, demands on the configuration management tool. The
heirarchy produced during system design will be wused to
structure the workspace of programming teams assigned to the
project. Each team will have its own workspace with
restricted access to other areas of the system.

As implementation proceeds, a programming team will
produce, compile, and test code. The Ada programming
language provides the capability for separately compiled
program units with restricted visibility of implementation

details. The configuration management tool must provide for

visible interface specifications and executable
implementations. The Ada package facility is designed to
support this concept of program development. The package

specification provides the interface requirements for the
components of the package. Any programming team that will
use this package must have read access to the package
specification.,

The package body provides the executable portion of the
package. Only the programming team responsible for

development of this package needs read or write access to

the package body. Teams with read access to a package

34

RERTTIUED AN S T et S VAR 13'\2\'\]u:\'\]\‘\2\\%2\'\:\1n‘ﬁ

.‘-.\‘- o \q) ‘.- R

. .
L

o 8 o

RPN

RN s

[|

KR

.
o

[RAY-|

Pl A

-
F .

.

..

ol
&

~e
- .h '.
'. , I l.

LG 8480

.l
[

1

RN
< o«
b{;\‘.\"i:\‘::‘

q

-

specification will need execute access to the package body.

The interfacing of modules of the software system |is

critical to the development of a large software project. As

modules are developed concurrently by various programming

teams, careful control must be maintained to insure that

out-of-date modules are not used by members of other teams.

A configuration management tool must maintain relationships

showing the dependencies of modules used in any desired

generation of the system or subsystem. This relation can be

automatically constructed from information provided by the

compiler and linker/loader, based on WITH clauses in the Ada

code. Whenever a modified version of a module is released
by a programming team, the modules dependent on the newly
modified module must be marked as inconsistent. An

automatic re-compile capability can be provided, but must be

implemented so as to prevent a new release of a module from
interfering with ongoing testing of other modules.
Several versions of a particular module may be produced

for various target applications. A single parent module may

call these modules in a single call statement. The actual
module desired in a particular compilation depends on the
target configuration (which is specified to the compiler at
compile time),. The configuration management tool must
provide the information necessary for the compiler to
determine which module should be used for this particular
compilation.

35

AT AP ATA e “a” a” a Y . » TR R L U PR ST T N A e S e e T T
l-"'!-'.\ ‘ %) ’, .. '1 % 3] 8. 94, "-‘\‘-'l At A WMLM A,;Lsin.{hfm'htﬂu'.f.';.\.'h'

* ,‘-"\n

........ R) AR Lol -.
] 3
s ‘d
. X
¢ ¥
R g
L) |
’, >
? IIT REQUIREMENTS ANALYSIS -
LN -
»*.‘
L As shown in Chapter II, the task of configuration
ﬂ management involves all members of a software development
é team during all phases of the project life cycle. In this
‘ chapter, the programming environment requirements for
L]
h support of the configuration management activity will be
= described. The functions necessary for a MAPSE level
- configuration management tool will be described. Evaluation
criteria for each of these functions will be listed and
i explained.
3 At this point, the task of configuration management has
} been defined, and each subtask has been explained in detail.
\ During this discussion, references were made to the support
‘:’ that these tasks would require from a programming
§ environment. In this section, the requirements developed in
; the previous chapter will be compiled and described in
_ sufficient detail to allow evaluation of a configuration
o
j management tool (CMT) implementation.
LN The analysis of the requirements associated with the
pEs
' task of configuration management will be functionally
4
24 decomposed using the Structured Analysis and Design
.
-
. Technique (SADT). SADT activity diagrams will be referenced
; throughout this discussion to show the functional =
Y »
) decomposition of the configuration management task to a K
) "
;g level where a detailed requirements analysis is appropriate. ;
*; The top level SADT diagram (figure 6) shows the F
s «
W . o 2 «
¥ :
> 36 N
! N
Z M
‘ R
o
1
i g O s R et

AT AN N

.y.. -_L'_—."

;

3 . TapTAOI{ . -y
g 921INd1jy .zum::z asdv owl-h-.—- uuocz
P s
~ SaTTJ 9UTT-330 0 pueuwod)
JUBWUOITAUY
\ —
~ s32alqo gq 31x0ddng j andino Toojf
< WD 8pTAO1d
Suotjewioyutr 3d3loixg
ain3on13g 3123foag
3lva : AJY pusuadeus) UOTIBINSTFUO) 10310y d
Y3QVI¥ jo yvy :31VQA 33i0pui0 e 1D ‘HOHLNY

e e -
'L;’zl_fj..".‘.

RS, O

Ly

Cafie

X ICOCN

el

P o

AN

¢ oY configuration management task with the input data items and

{~ the output products. The processes listed in the SADT t
.~

g diagrams will be described in the text. The sub-headings of)
‘g this chapter will contain a cross-reference to the

appropriate SADT diagram using the numbering convention

proposed in (SofTech 1976).

LIS

P 0

Since the CMT that is to be evaluated was developed to

R RRARTT

meet the requirements specified in Stoneman, the first step

of the requirements analysis will be to establish the level

of CM support specified in Stoneman, and apply these

These two steps

to the CM tasks in Chapter II.

quidelines

will give a set of requirements for a MAPSE CMT. In

¥ & s i F I F

Chapter V, some additional requirements that should be

addressed in future APSE's will be described.

Every MAPSE implementation is required by Stoneman to

have a configuration management tool that supports the task

Lr of configuration control (CC). This tool must maintain

ot historic data "sufficient to determine the origin and

purpose of each component of the configuration and to N

i’

control the process of further development and maintenance"

§ (Stoneman, 1980:6.4.12, 2.B.5(8)).]
;j A MAPSE is not required to automate the other f
fﬁ configuration management tasks or provide integrated support

E of configuration management. However, to satisify the 5
. .
”i requirement in Stoneman that initial environments be :
% .
t; o "upwards compatible", Stoneman requires the configuration

- b2 o
. 38
;
;

i)

h]
s,
)
‘.
»

. e .t.".\ '-

b1
*
1,

wl s
LPLAA AT ST

O . O e & Rl ¥
‘. K] .ﬁﬁlﬁ.’ J.J ‘II

¢
0
s o0 ¥

SANAS S

VANl

£

AL

»

- &

<, .'.;..'.Afl“.‘.

1

"ﬁlé#&sﬁ

KA

[~ &

’;. "
-
’0
4,
'~
7
'
A

3
6

management tool to use a central database that provides all
APSE tools with a uniform and accessible interface to all of
the project's information (Stoneman, 1980:2.B.4). The
careful wuse of a central database will permit the addition
of APSE 1level tools that provide the integrated support
necessary for effective configuration management of large
projects.

To satisfy these guidelines from Stoneman, the CMT must
perform two tasks. First, it must provide configuration
control for the entire project development. Configuration
control is described from a management perspective in
Chapter II (pages 21 - 24) and also includes most of the
tasks performed by project engineers, also described in
Chaper II (pages 27 - 34). The CC task uses the project
structure, provided by the project manager, to process the
configuration management commands of users and other APSE
tools. These commands and the required processing will be
described in the next section.

The second task required of the CMT is to maintain all
of the project information in a central database, providing
project members with access to appropriate APSE tools, and

supporting the addition of future tools that will improve

the capabilities of the APSE, The project data must be
maintained in the database based on the structure
established by the <configuration manager. All access

requests for objects in the project database are first

39

'. PO =% R A - w Ve M M PSSP L NS P N _ PR > A N ¥ o IR -
T
ot
*._
(o
34
L.
N
L
Lo A processed by the configuration control tool to insure that
s 2 8
A the goals of configuration control are met. The
: relationship between these two tasks is shown in figure 7
SADT AOQ. The ©processing required for this task will be
- described in the section titled "Maintain Project Data."
o Configuration Control Requirements (Al)
. The configuration control tool (CCT) provides a single
<
g
N interface that is responsible for maintaining the
SR}
N
'O . . .
ﬁq consistency of the project database. As shown in figure 8,
AN
. the configuration control tool accomplishes this by
ot
? processing all commands affecting objects contained in the
%
}f project database. When these commands are received, the
Y .‘
. (ib configuration control tool performs the processing necessary
i for maintaining configuration control ©before requesting
N L]
f: k3
ﬁj objects from the database or creating new objects in the
&l
database. With this arrangement, the configuration control
)
o .
'{{ tool is constantly in control of the state of the project
. database and is able to provide current information to all
SN
) members of the project that have the appropriate access
p _‘1
N rights.
) 8
T
Y The configuration control tool must provide a minimum
" level of processing to support project development,. The
Iy
‘3 configuration control tool must support partitioning of the
et
AN . .
- database, control access rights, support multiple versions
@ support multiple targets, provide traceability, and maintain
VI
¥
,3 40
N
%
1@
s
X
* LIPEE I 2 T P . T T R S TR R e) - e P T O S S TR AT SN S S IR SR SRR SRR ST
¥ e e o o T ol W G G G S R R N s S e, e STy E R A PR s RS St e RS

(L 2IniTg | juauuoxtauy rx0ding 1y opraocig N\
:4IGWNN) 3L *3QON
)w j .
| k3
| &
-\.
-s\.
H N,
'’
113y [qQ A S “
- __eaeg 4 v,
€0~ SaT1y auTT-7J0 129{01g :
P utejutey < d
A0 I £q90 € |
.> .
133e LqQ v o
ﬁ ~Tq0 g4a I ,Al|||\
- 3sonoal1 [qQ 1013U0)
_ UOTITIIRG 1I33:01(TuotieanlIyuon .A puewwo) 71
P 9IN1ONI1S G$S890Y Tepraoay , N
I~ UOTJEWIOJUT 3Da.01g ___A ndInn [
“1o0],
31n12n11S 129{044
10
31vQ u>u¢ usuaczue :Oﬂumhﬂiwwcoun 123 3‘“
Y¥3avay v v :34VQ 33a0puig yaey 149 ‘HOH LNV
¢
»
A A AR .-\.\.\\«M\. r - e : Ty Ny Nty N ﬁc\q,ni 7« \<l LR] LRI ' AL N R) JJ‘.
Xk ”.\.Tﬂ..bv& ;-. \A..“-. !) u.\l fxﬁ Aﬂ\\ . “ I-wx\,w.\.,-' ‘..u..... .\-\.\-.-.lf..ﬂ..., m-o\....‘-.w.f.”...f ¥[%hd») \a“-.u v ‘.f...“\...wﬁ...\) \.q...u-unuﬁu#_s A .

210150115 ISdVYW '8 21n81y

..h

SYANNY 490dd A
SWVYHL A

NOISHd n @

WV3L !

SLSATVNY INTIWIOVNVNW ~

SWALSKS Loaroyd N

AN 1 N .W

v

KA

N

-"
~ .

]
A

42
.-\'. -

Jsvavivda

JIDVNVW dSVEVIVA

JAOVNVN NOILVINIIINOD !

STOOL 3SdV

JALIIJATLNI TOVAONVYT ANVWKWOD

N-....\.\n‘s\

1-.-.-.

N -. n‘. .
v e N

*\ 2227 3K 1- e, .- ST J..J v N -d-.#-.-/\v i 11.-00.-#-2."0&(..- 1 Y e T T D) ‘v J-J e J . -r-nd .
AN AN u.a. S .%hu PUY - SOCEMIT” - XA u ar.t)rf A s.

i ps Ay Sl " . v Ral

AL e s s Bt . A AL L S et M SRR M St St e i e~ s)

- - baselines. The relationship between each of these processes

{ is shown in figure 9 SADT Al. This diagram, representing a
N first-level SADT breakdown of the task
23
. Provide_Configuration_Control, shows the exchange of

information between these processes and the information

<
LN, required by the configuration control tool from users and
o management.

Each of the processes shown on the diagram is described
in more detail below.

Partition Project Database (Al1l). The task of

partitioning the project database provides the basis for the

A

SE rest of the CM tasks. This task can be decomposed into five
ij component parts (see figure 10 SADT All). The CCT must (a)
-

{ ‘zg simultaneously support multiple projects, (b) support
E multiple teams assigned to each project, (c) provide
Pg protected workspaces for each engineer assigned to the
3 project, (d) develop the project partition based on a
.?E hierarchical project structure, and (e) provide common
5 libraries for all project members. Each of these tasks will
J; be further described below.

£ The component requirements of the task Partition Project
3 Database and the <criteria for evaluating this task are
.a listed in Table I Partition Requirements.

;: Support Multiple Projects (Alll). The APSE

database must be capable of supporting several projects

Cata/ Nl 7 3 M

43

-« o

VTR LA Ny e AT "_.. e e e et _--'_ <
\' X IR Gk, d A L _‘.':‘...):.'FAL ncel

A

ﬁ.. ‘v
?«
3 .
. ‘v
-M
2 7
3 %
b E
1 6 21n81y 013U0) | 8 X 2
3 T I3UQ0) UOTIBRINSTJUO)) ISPTAOI . . i)
) ‘HIGWNN T 0 Juo) ap d % 2 LN 1v :3QON e&
3 R
b 3 s
F. pd .n-.\.m
g 10 Sojyut 309l01g P
m P sautTaseg ..m‘.
& < j Isenbaz [qQ Tutejutey P
b’ _ 7
3 m 21N30N13S ﬁoum_/ S L
5 38} 133e TqQ ~ “.“
< £3TTIqEOOR]] u.u
N1 90 |\ sSeanqtiile duryoel] Taptaoiyg PUBWWOD |{) ﬂ
; 2
W.. Y \..-1.
8 ” s3adae] ! ‘3
3 0 S Tq0 4a ordrarny ndanc ooy 11 . %
- T3 10ddng ‘ ¢!
. i T ;
g N , ¢ k - F Z
8 asanbax [qq SUOTSIap puBwWWOD [{) 4 e
- \ 93NQTi13312 UOTIBTIE, TatdTaTny F i o
. 9INQTIIIB UOTSTASY T310ddng sainqtilie [qQ _mH .sm
“... PA
2 L Z
ﬁ 1sanbazx [qqQ $3Inq T111Y puewwod [{) 71 R
X _ $s920Y X
S33INQTAIIE SSoI0Y T T013U0) Iy
h 5
. .II.
g <& r _ B
; €0 > uotitiied 3d3loig dad 3y2 \4
. 0 N 8IN315NI1S SSaJIy TuotlTlIE,_
. ’ : ..\..
ain3oniys 323foiyg _ oy
: 0 e
“ a1va :A3Y] 3ususBeuey vorieindrzuoy :193rOYd
l',-
; Y3aQv3I¥| v+ yvy :31Va 7330puig szey 1aq -HOHLNYV “
[} sy « -.,h
-\.\Jw Q
»ﬁ-ll- ” - .-. Y P2 oo -- -(- -s-. * .w.. ‘., .n S 1~.....,.-..‘....... VY hi-..-. it I...-v \-.... »-~ --u-.:l-- B WMAUSILL ..-.M 4
i R R R A R

:y3BNON A0 oW onnisd gy [:3goN 5

SatIeIqT] %
| ~N 10 51IN3ONI3S SS200Y “uowwo) L
: Topraoiyg Co

. N ah)

N

. f .
) 2In319oN11§ g
S) -129l01yg .
9IN3IdNI}S SS8IJY : Te2TYd21BI3TY 3
T110ddng

) .“ ﬁ “ m r._)
3 X T
. 9IN3dN11S SS200Y : 4 sasedsyioy .

Taprtaoig

!

a 1

AN
f-},’n—!—

O NRY
-,1'.;1"3("-

>

-

-

-

Pl

suwea],
. 9IN3ONI3S SSaJ0y Tardrarng
3 : : T310ddng

KR Gh

o

1

)

: [
< s123fo1g
', zo <Uotitiied 309lo1g Tatrdratny
. T110ddng
. \ \ \ -
. a1n1oni13s 393loxg
: ' J
. . alva tAJY] TTRTETER UOTIEINTHINO - 193r0yd
A ‘ ¥3av3y v8 v :31VQa 3310puip aey 14D ‘HOHLNV

° 2

")

e

.
)

“

o
-]

P
S SEN

A2
™~]

MY

’
)

I

. ~ \'
N
“haa

.-,gi

- Y EXL e ¢ 2 0 s, ¢ ¢ NEN nnﬂ.ﬂ.-. " et
1-....... F ;u\-\.-uno;- s () vl
.-1 + 2] W .- [N -M.- -(i'n\ -c\ h(\n--,?\ﬁ-- u..)v\

Y - By - ~% 1Y
DO - OO

SNNANS] RS

)

"

Partition Requirements

Requirements

Support Multiple Projects.

Support Multiple Teams.

Engineer Workspace.

dierarchical
e ture

-~

NS

h

tommon Libraries.

"N :-‘:

2
o
K

o- “

gl

o d

.‘(:“.-' I}
F]

at

RANAA
A

t
-

.
-

Evaluation Criteria

Restrict access to other
projects.

Control access between
teams.

Support multiple levels of
teams,

Permit multiple revisions.

Provide consistent interface
to rest of project.

Inform users of new
revisions of shared
objects.

Allow default revision.

Allow default variation.

Provide automatic variation
selection.

Support user views of project
structure.

Maintain consistency of
compiled objects in
common library.

Record changes to object in
common library.

Permit single copy of object
under revision at a time.

Provide Functional index.

Allow sharing of library
objects.

»
-

3
XXX,

4

%

46

TR WY - RSN 0 DR e et S tuc IV S B T i i A - Sie a2 i S A A

;"'.'v‘

- a4 2 &

simultaneously. Each of these projects will have engineers

" "..‘ ‘.. "v ”

and managers assigned to it. The CCT must insure that these

——

'S projects can develop concurrently without interference. The
fg CCT protects projects from interference by isolating the
. object names of a project from the object names of all other
;g projects, and by isolating users assigned to one project
é from the actions of other users. The isolated name space is
i achieved by using the project name as the root directory for
;; each project. Under this root each project <can create
1% objects using whatever names desired without confusion with
-
N other projects using the same names.
a Isolation from other wusers is achieved by creating
i access rights based on project affiliation. A user can use
" 'i@ these access rights to protect objects developed for one
jg | project from being altered (intentionally or otherwise) by
,; personnel working on other projects.
Support Multiple Teams (All12). The project's team
S structure, provided by project management, is used to
g
i partition this project area within the APSE database. Each
N

individual working on the project will be assigned to a
certain portion of the project with specific duties. Based

on the individual's assignment, he will require access to a

L4 . % _'l, i

certain subset of the project partition.

The CCT supports this structured access requirement by

l\lyl\‘.l‘ :

i_ associating project members with teams, with each team
4 having access to a subset of the project. Within these
a ~

N. '..\ -.

T Yas

. _W.“_K’W_'.""', -"'. _': .l_ A AL A S i St el S Ak il gt 4 ab4 ':‘!
R R e

teams, the types of objects each individual will access will
depend on his duties. The CCT must provide a mechanism for
restricting access within a team so that individuals will
only have access to the types of objects they need. The
team structure should permit multiple levels of teams in a
single project hierarchy.

Provide Workspaces (All3). The configuration

control tool must provide a protected workspace for each
individual assigned to the project. Within this workspace,
an engineer will develop a software product for release to
the other project members requiring access to it. During
the development of this product, the engineer will, in

general, produce several revisions before a version ready

for release to the other project members is developed. An
engineer's workspace must maintain these intermediate
products, allowing the engineer to recall any previous
design.

The engineer must also be provided with a consistent
interface to other objects in the project database. The
configuration control tool must provide access to the
current revision of any object referenced by the engineer,
but the release of a new revision must not be forced upon an
engineer without his knowledge. This can be accomplished by
making the current revision of referenced objects the
default version at the beginning of the iterative design

process, and informing the engineer whenever an wupdated

NN RS .

“ e ‘e “ "w
PRI S, S R TR

. & 5%
J £ o
-‘-fob-

PPN

s Y by
‘:’_:"‘:’ r'. 1

0
.
-t

<, Ay
» '-‘ f.- (

.,
XX

.
.

‘Y o Y

S

- a

Ve

L 1SN

-
1 4

a
LI

NS

e

.....
.

version has been released to the project members. The
engineer then must decide when to begin wusing the new
object.

During the development of an object in this protected
workspace, the engineer must have the capability for
revising the object, storing the revision, restoring
previous versions and releasing the object to other project
members. The configuration control tool is responsible for
maintaining the information necessary for performing these

tasks.

Support Hierarchical Project Structure (All4). The

structure of a project will be determined by the functional
decomposition of the project into portions that will be
either further decomposed (independently) or else developed
by a single team of engineers. The structure will also be
influenced by the requirement for parallel development of a
particular functional unit for different applications (i.e.
target systems).

The result of these two influences on the project file
structure 1is a hierarchy of objects determined by the
functional decomposition of the project. On a single branch
of this hierarchy, there may actually be several different
variations of an object, each designed for a particular
application. Within each of these branches, there may be a

series of sequential revisions with one being the result of

corrections or modifications of its predecessor. Each of

49

et
-
o .

x

“ _..-\‘-.-;;..\- o .--._‘ -- -‘_-.-\-.\._..'\- ‘.~.\q \..\l..‘i;\c'\.'\-'_.w: .'.-_'.‘

.

-

DAEN

AL AL S DAL AL 4 DAY LA SIS AT S S A A A e ko PR R 2 A A Sy

LR R UTR T GG Y A T ik o Ao Ros dhoe-) - g
Ol Bl T Sl gl Rl e KR} ARt A Res Jhoe S S San A0 il sl e " SOl e aia Mt o - Snee o e 4 e s
)\- AR N e A I R A AR S AR et o e At LI I Rl R -‘W‘-‘W."‘."‘.‘-‘f L |

these revisions is designed to perform the same function for

',

the same application. This arrangement is illustrated in
figure 11, Project Hierarchy. This figure illustrates the
actual project structure which contains the products of all
of the individual engineers.

The configuration control tool must isolate the wuser
from this multi-layered structure by automatically selecting
the correct objects for a specified application. Figure 12
User View shows three different views of this hierarchy, all
from the same 1level of the project structure, but for
developers of different target systems. In this diagram,
the same weapon system is being developed for the Army, Navy
and the Air Force. The same central transform is applicable

e:; to all three target systems, but each application will have
a different afferent and efferent section specially suited
to the target system.

The configuration control tool supports the parallel
development of specialized branches in this project
structure by isolating the user from this structure and
automatically selecting the correct module when a
configuration is built, In the example above, when a
configuration is built for the Army system, the user would
only specify, when invoking an APSE tool, that code for the
Army system was desired, and the configuration control tool
would be responsible for determining what files were used,

based on the project structure (choosing the default

NN N e L P]

iy

WY
- ‘-
> %

)

TN

Ayoieraty 108foxg (1 2in81g

Xt

>

A ENONE

.
b

$S32014 uUai1a3IY :q masvo;

(58

. wIiojsuel] [eIjua) :) STNPO}

Aty

0%

3 $S§3201J JU3IdIJY :g S[NPO

¢

W

7 1d 1d 1d] d

L)
[
19
m
[2°]
Wl
m&‘q.

e

. L d a STNPOK d STNPON q g aTnpPoy g STNpoK
7 . AV Aaep/Auay AaeyN/qv Away
_.]]
e I S/

PN

¢

.

” \\ 7 /// T

“m SN > VA

40)
a STnpPoK o) J 9T0POKN g 9Tnpoy

_ i P
- ‘ \‘\\

2 ¥y 3Tnpoy

4"' ‘-“-' '.\'. '..." . "y \"‘\f\'y’ Pk PR K R Vgl h’n

. LN L.
; oY A”w o

L, " 4\4\1-‘ o IR I PR AL w.-.\w.-‘ e D A Jﬂfoﬂﬁo =8 PEYEREN - n-h)-;r.nv.-..-cn LA, 4 ARAARRA S . [S
*, N Fele Y ety e bt e el y A, A, vy e - " ‘' » SALY ARSI L/ 1S
n-!- ,_l{..&v.-‘-sﬂg.(\.r‘a — 2 A s i) ¢-.\. Ao .u..\,\.uﬂ» \J-.»«... oy ,‘-W-..-..\-M\.w. Mo-.\.-v-(\ﬂﬁ.q, .ui,‘- N.-, ,i”\ \-1)%.\ A b5 Q et - oe,

ANE "

s
(RN
. & "
N

(Module A

e Module B Module C Module D
“~

B Army B(2) c(3) Army D(1)

ooy, [(A) Army User's View

tf Module A

@ Module B Module C Module D

n AF B(3) C(3) AF D(3)

It (B) Air Force User's View

A Module A

B2 Module B Module C Module D

o Navy B(3) C(3) Navy D(1)

(C) Navy User's View

Figure 12 User's Views

X
\ 52
N
3

" e * e M T e ™t et AT T AT " AT AT N R e AT T AT T e T NS
N e e T e T e A AN e ST e e e

z
‘.
I‘

'Q‘.

o

L

" %

A' X
[REN

——
S

[

YAy
FARSEUY

L)

" s s B RD

X

rdIShIr
R |

revision of the Army variation wherever it existed and using

the default revision of other modules as necessary).

Provide Common Libraries (All5). As mentioned

earlier, the engineers assigned to a project must have
access to common libraries of objects developed by other
project members. The CCT must support this requirement by

providing a controlled project library that can be shared by

all project members. Sharing of database objects must be
allowed in three forms. First, an individual data object
can be shared. Next, an entire revision set can be shared,

with new revisions made available to all sharing wusers.
Finally, an entire subtree can be shared, including all
revision sets in the subtree.

Control Access Rights (Al2). The engineer who develops

an object and the configuration manager responsible for
maintaining the objects in the project library must both be
able to restrict access to the objects under their control.
There are four requirements that the CCT must satisfy to
achieve the desired level of access control.

First, the CCT must allow each user to specify a set of
default access rights that will apply to every object he
creates. These access rights can be specified based on the
team structure by listing the teams that will have a given
access to an object, or access can be specified by 1listing

individual users that will be allowed access to the objects.

53

A A R S R R I LI IS T RIS '_.‘_..-'-‘,.P‘-"_,:'_.".-.-

. e .

The next requirement that the CCT must satisfy is to

o
.

permit project members to change the access rights of

.
l
a .

9 viaind

o objects in the project database. The ability to change the
tg access rights of an object should be one of the types of
> access rights the user controls.

:é The next requirement which the CCT must satisfy to

Ao

i achieve sa sfactory access control is to support several
;e' types of access restrictions for both objects in the
‘% database, and directories. The type of restrictions
X

3 implemented on any particular implementation is a design
l‘ decision, but every implementation must support the simple
éz and efficient addition of new access restrictions.

<

f For example, an APSE implementation may decide to
N

{ Q}b support the specification of read, write, execute, and
?S attribute changing. For many projects this will be
;3 adequate, but if a configuration manager requires more
33

control over objects in the project database, he must be
able to establish additional restrictions. In this example,
he may decide to add controls on deletion, sharing, and
revising.
If a single access code in the original system controls P

several types of access rights, the system must permit the

,' ;';'.r".-.'.-ﬂ';') ‘."4 ARASY

individual specification of these rights as a user option.

-

For example, if in the original system, the write access

o A

attribute also controlled deletion, with simple

L
(A

a
o

modifications, the system must support separate access

'.- ... *

54

AR A

s »
[N

-

R LR R TR L S L LT 57, L RALTEL T L LT B G G St

1 4
PRI POl
L BEREAA

a 4 2, p -
XA BNA

. ,).';.

Eafs

ety
"f I P

o]
LN

)
[

P2

D)

LW

S

controls for these two operations. This capability must be

provided to the extent that operations are available with

APSE tools, so that, if desired, a user could specify by

name or team who could use each APSE tool on each object in

the database. Although this extreme case will not normally

be implemented, this capability provides the <configuration

manager with the flexibility to <control a project to

whatever level he desires.

Finally, access control should be provided for both

objects in the database and directories, This permits a

user to protect entire subtrees in his workspace by simply

changing the access control to a single directory.

Directory access <control should not replace any of the

access controls provided for individual objects, but rather

act as a screen to gain access to the access controls of the
objects in the subtree under the directory.

Table II Access Requirements lists the requirements for

controlling access rights and the criteria for evaluating

this portion of the CCT.

Support Multiple Versions (Al3). As shown in the

previous section on the hierarchical project structure,

multiple versions of objects in a project database will be
related to one another in two ways. First, there are
objects that are revisions of their predecessor. These
objects exist as a result of corrections or modifications

same

with both objects performing the same function for the

55

I R I R R L e L L R LR s AR IR
e e e e e L A T f e TP e e

TABLE II Access Requirements

Requirements

1. Support user default set
of access rights.

2. Allow user to modify
access rights,

3. Allow configuration
manager to create new
access rights.

4, Provide access control
on every object and
directory in database.

Evaluation Criteria

Allow user specification of
default access rights.

Specify default access rights
by team or by
individual user.

Allow user to change each
access attribute.

Allow creator of object to
designate who can change
access controls.

Allow configuration manager
to add access controls.

Provide access control for
each APSE tool.

Provide standard set of
access controls.

Base access control on
project, team and user
name.

application.

The second relationship exists when more than

one object is created for a given function, with each object

designated for a particular application. These objects are

considered variations of each other.

As a result of both of these influences, there will

exist in the project database a large number of objects

P VWAL N

user would like to refer to by the same name and

56

.

’ o Y .'_.' .'_- -
TR S L S TR

AR = 4 vwa_' “".'.~5' g

T B e Wy,

Ry

ARPCARE

P PO
IR

Yy)

I TP S s Su)

DNENO
PR
O
a
LN

L

-1

N
v,
-
~
N
~',..‘ N
-
bt

l{ l.‘ & A ’
AN

“-.

.4
i
.
«, *I
.

.)
(N 'l".': * 'J

Al AL
PRI AR SENES -

AJLIN
N, P

l;”‘ AN
lf, a 8 _.
LRI

-“l-’l"'f_'

2P

- % ¥
s - Iy
. e “

P e

a2

h]

AL

have the system sort out which object he wants. This

service is provided by the CCT by supporting both revisions

and variations and allowing the user to specify, either by

using the wuser defined default version or by completely

identifying an individual object, exactly what objects will

be used for a particular operation.

Therefore the task of supporting multiple versions is

satisfied by meeting three requirements. The CCT must (1)

support revisions, (2) support variations, and (3) allow

user-defined default values for ©both revisions and

variations.

The requirements and criteria for evaluating the task of
supporting multiple versions are listed in Table III Version
Requirements.

Multiple Targets (Al4). The overall objective

Support

of the APSE program is to "offer cost effective support to

all functions in a project team ... particularly in the
embedded computer system field" (Stoneman 80:2.B.1). The
APSE design calls for meeting this objective by adopting the
approach of developing software on a host computer for

execution on target machines. In many cases, a single host

machine will support the development of software for several

target machines as well as for the host itself. In this

situation, the CCT must organize the executable modules so

that a configuration is composed of only modules for a

single target system.

57

".'.'d" _.l_n.‘_ ‘-."-.‘, e

P . Sy Al .y]

TABLE III Version Requirements

Requirements Evaluation Criteria

1. Support revisions. Provide automatic incremental
revisioning when objects
modified.

Provide over~write option on
user request.

Provide listing of current
revision of objects in
subtree to record state
of project.

-

2., Support variations. Support multiple levels of
variations.
Apply single variation

gkl
’

-

P

r]
B
T B RS

N specification to
~ all objects in sub-tree.
3
. 3 .
- 3. Allow user-defined Allow default of specific
e defaults for both revision by revision
N, revisions and number.
variations. Allow default of the most
{ » o
s - recent revision.
o Allow user defined default of
~! variation.
5.
RS
o
NS To satisfactorilly support multiple targets, the CCT
'{ must meet three requirements. First, it must provide a
v,
nE mechanism for grouping executable modules by target system.
Q; Second, it must insure that when a configuration is linked,
-
-
- or a module dependant on other modules is <compiled, all
- input modules are intended for the same target. Finally,
5
o the CCT must provide a means for a single object file to be
[£? _
. used for several target systems when appropriate.
e
-/ These three requirements and their evaluation «criteria
(]
SN are shown in Table IV Multiple Target Requirements,
. MY
-l 58

»

)

W et N et e e A" e " " ™ - . B - ey . e el e e . e .
Mg e Y N N e Sy '-'\ _.\ o e ‘\n'*-_. K g, 4-.- G A N A PR TR L N (AT L AT AT T

A IR N A, A S

eamamn n - oa_m.w =

C s ar At imem a4 e

® e e A mm A B A ma A m R e 4 4 s o~ st - omamma

.5\

e

i

re

S
tl' = TABLE IV Multiple Target Requirements

iﬂ Requirements Evaluation Criteria

o

o 1. Group modules by target Record identification of

B system. target systems for

object files and

f executables.

b Group objects in project

e structure by target
?¥ system.

\ 2. Insure consistency of Check target system ID when
oy compiled and linked compiling and linking.
e objects. Reject commands that mix
-Sﬂ target systems.

=

e 3. Allow single object to be Support multiple target ID's
- used on multiple on a single object.

e targets. Allow multiple target object
) to appear in multiple
N groupings of object

? files and executables.

Provide Traceability (Al5). One of the key functions
under configuration control is to be able to track
; requirements, specifications, design, code and tests through
,l
’ AI
d; the system life cycle. In a MAPSE, there will be 1little
\CY)
53 support for automatically tracking this information. An
R advanced APSE will wuse some of the techniques from
r::'
o artificial intelligence to better support this task. For
i
ﬁt early implementations, the support which the CCT must
o0 provide consists of providing a means to record the
fQ relationship between objects in the database and to retrieve
.
Al
‘s objects based on these relations. These relationships
)
g . should be immune to changes in the name or directory of
:1::: v
ne e
\2 59
| $"
v
L]
N
N
8

LA

Ly o« Ll ‘Al a"u" M LA PO G AL R C et T e " -t t el Y . . s
Y NSRS L e N, B T T T e T e T YU A
M;ﬁ!:'. :'lffl'l?)!} J’& tl&la"'l‘.f o h. L o S N RO .:'{.‘f-_i..;'. FRUYSCACANC AU, oS P L o YR W

Y

*

ki " el A 4 W B A i he - e 4 4 0 aeC A an e ave dn ie B4n Ata B S0 e ma Ame i o]
S N T W Y S W LN Y W LV T P I~ ™~ 5 =5 w5 % A
- B A i T I B e R T A O P L

either object. This support would allow the configuration
manager to develop the structure for the products of the
next phase of the project life cycle by establishing objects
that have a recorded relation to the objects from the
previous phase.

These relations would provide the necessary information
for tracking a change in an object at one phase of the
project life cycle by identifying the objects in the next
phase that would potentially be impacted by this change.

This area of configuration control is probably the least
supported of any of the configuration control tasks, but is
also one of the most important. Considerably more research
needs to be done before effective tracking of project
development becomes a reality.

The requirements and evaluation criteria for this 1low
level of support for the traceability task are listed in
Table V Traceability Requirements.

Maintain Baselines (Al6). The last task performed by

the CCT supports the manager's configuration control
requirements. This task involves the support of project
baselines. Associated with this task are many of the same

requirements listed in the previous four categories. Within
a project baseline, there will be revisions, variations,
multiple targets, and the access to the baseline must be
controlled just as access is controlled to objects in the

engineer's workspace. However, there are additional

60

B T RN N L R S L LR
L P LA W L_\.':i.‘:bl'-sﬂ'.k' o et LL;.‘:&‘\'_L‘:L'C.

T T e Tt e T T T et et T T T Y et e A S (L S e
ARSI SR S O R T R R R P

I
.

.

»

]

_

l“‘

.\' -

SRt

l N TABLE V Traceability Requirements

o Requirements Evaluation Criteria

- 1. Record relationships Maintain attribute that

) between objects. contains path name to

. related objects.

53 Relationship between objects

o not affected by change in

': name or directory.

~

: 2. Retrieve objects based on Provide tool to retrieve

P relation to other referenced objects.

i: object. .
G “
3 K
A pe
< requirements that must be satisfied and some of the same ?
LS -
\l l.
N requirements must be evaluated in different ways. g
- L
-, In this section, it will be assumed that the g
2. ‘EQ configuration manager has available the same support in the

-‘.

g . . .

j above 1listed areas as do the engineers assigned to the

g project. The requirements and the evaluation criteria

x listed will only include those areas that are unique to the

,$ task of supporting project baselines.

o

< For project management, the task of configuration

s control consists of establishing baselines at specific

- points in the project life cycle and controlling changes to

‘{ these baselines. To accomplish configuration control,
-

- project management needs a structured workspace designed to

.

A0 carefully regulate interaction with the work areas used by

" B
hCed

the project teams.

“.u_

P
S
s
)

-

Q"

61

RIS

Jlad

aa

LN Y

I D S N Rt TR S L L S SN S I SR g PR TSI LRSI
Lt X otal ML PG LN PR N Y %{\¢'—' "liﬁi .AXLﬂmt'a.:'h-:\i.L-\i-'-

LU A A J s S oA DR S A S kAR A e AR A s (0 AT el Sl Sy A A A

The workspace used by project management will <contain
baseline elements with many of the same attributes as
required for project engineers. The primary difference will
be the addition of special change control information. Each
baseline object will be developed as a result of a

requirements document with a set of approved class I changes

and a set of class II changes. The control of the class 1
changes and tracking of the requirements is the
responsibility of the CCT.

Each proposed change must be entered into the project
database (management workspace). When the approval cycle is
complete, the <change is either stored in a 1log of
disapproved changes or recorded for use in building a new
baseline. This record will contain the components that must
be changed to implement the approved change. This record is
the basis for the introduction of a new baseline (although,
in general, many approved changes will be included for each
new baseline).

This record of approved changes will include information
on the specifications, designs and modules of code affected
by the change. Project management will use this information
to assign work to various teams of engineers. When a
portion of this change is completed by a project team, the

team will release a <copy to the project management

workspace.

hd ._f..-' Pndd ST eve ikl it Ad ._-'..v'.v_t v _":.- _'.'".-'—-.".-",. w, 7 r::

[0
2

e L.

- e The change record will record which components have been
”; . changed and released to the project workspace to monitor
-3~

;:r: progress on implementing the approved changes. When all
! ‘-,\

-, f R
"o changed components have been released to the project

management workspace, the configuration manager builds a new

o ¥

'Qﬁk configuration by selecting the correct combination of
>,

 §£ changed and unchanged modules. This new configuration is a

Z_* proposed new baseline.

?52 When a new baseline is established, it becomes a
R

‘?ﬁ permanent part of the project database. Along with the
¥#i baseline itself are stored all of the changes implemented in
A

{;3 this baseline and a log of class II changes derived from the
WA

3:3 logs of the development teams.

{3\ €:> The task of supporting project baselines consists of
'§£ three requirements for the CCT. The CCT must maintain

.

::& multiple fixed reference points while development continues
;; towards the next baseline, the CCT must control changes to

) .
.l " '-. "

o

BN

a2’

these fixed reference points, and the CCT must assist in the

A
Sfa e

processing of proposed changes and the implementation of

ot

WO approved changes.

S

. The requirements and evaluation criteria for evaluating

e the task Maintain_Baselines are listed in Table VI Baseline

CAge Requirements.
. '.l-\l

LR

..'.n.'

o

N

o

e =

._::._ 63

°at

I\..‘

<
<
PR 4 U TR I I TR TUR S AT I AP I, PR R I I R S i R e N I L A P APt T A LR
D AN N S TR Oy AT AT A RO R R, -‘}:‘."':' ‘g:'.g\;\.a ST S S VA P A T P R L S PR S

APACRAAE h N P iR S s St et el LA AP SIMEC IS S Al ol S g Recir s M 2 0
. PRt S I - v KRl

TABLE VI Baseline Requirements

Requirements Evaluation Criteria
1. Maintain fixed reference Control release from
point. engineer's workspaces.

Identify entire baseline by
single reference.

2. Control changes to Restrict modification of
project baseline. project baseline.
Monitor modification of
project baseline.
Maintain consistency of
compiled units in
baseline.

3. Process changes to Maintain log of approved
baselines. changes.
Identify objects changing in
new baseline.
Record approval status of
proposed baseline.

Maintain Project Data (A2)

As shown in figure 7 SADT AO, the MAPSE 1level
configuration management task consists of two components.
The requirements for the larger and more complex tasks have
just been developed. Now, the requirements for the task of
maintaining the project data will be developed.

The maintenance of project data will often be performed
by several different components of the MAPSE with some
functions provided by the DBMS and some by the file manager
of the KAPSE. This task will logically be decomposed, as
shown in figure 13, SADT A2, into two components: provide

system reliability and maintain object attributes. These

64

RS AN T S e B I L S LSV
LN -‘v‘:\.;"‘h.- I PR P IR PR

LA A A A o v}
. « - - .

Bl fhnh h oA Mt B a8 & & et e Am

e B b Bl ol o ol ot B

alndandad

R

Aas

-

65

21n81 eieq 10alo1g urejur .
IR S — a d Mooaaun 300N
& c
€0 13e [q0 $31NqTI1lY J 13e [qQ A
“3lq
TuteljuTEl
N
31In39n13S SS2adJY
€D
uotatired 1d0aloxyg
[40)
i3sanbaix [qp
10
\.
Ije 3asde101g 1
P A3tTTQRTTaY
0 Tqo aq Tweisks [To @@ 11
P Tapiaoig
zo S31T3 dUTT-330
31va :AQY[ueueTeus Wreiiiiuey) 93r0Nd
y3Qv3y vg yvK +31VYQ J3I0pUIQ NICH mouzczhz‘
TR a ﬁ?
..“ \
" / .n\“l\. WAL [RAAANRGS gty ol o LT fﬂ.- s Y ¥ LA L MV & --1.1(:.1.(..«.4 Al LA
- 2 \“)\..Vm-m. .v{ ..«..e] \x,.um..#:m)ﬁ. 5nﬂs. ...L.h , hq...‘.h.....ﬁ_. ; x.......a.wa..w.. .w.._..ﬂ_.,.s..*-u.\.s, “ s...‘. N DL e

L

Y

e
v

-.\1._.

&~

.
<
-

._.\

P

3

L

. T e "
(XSRS

-

- '.-\'..

%

Y at

3 <

L)

B A A S A B WO MU SR AR e A

LS A A e R A

S two tasks will <each be described below and evaluation
N criteria proposed.

Provide System Reliability (A21). As described in the

L
o previous section, the <configuration control tool is

responsible for selecting the correct version of an object

j% from the project database based on information provided by
’j; the user and the requesting tool. This capability is

o achieved by making the configuration manager responsible for

o0y
’g; maintaining sufficient information on every object in the
(Ot .
F: database to choose the correct object and locate the object
ﬁ} for retrieval by the operating system.
.~
]
.fy Associated with this task of choosing between several
>h
ey possible versions of an object is the task of maintaining
., @ duplicate «copies of objects to protect the project from
o
%j system failures. Since the information necessary for
RN
y keeping track of redundant copies of objects is similar to
"y that required for maintaining various versions of an object,
d"::n
O the task of controlling the backup of project objects falls
-
’ Ld
Y
e on the configuration management tool.
v The MAPSE backup system uses off-line tape storage to
-
a7
< store a copy of objects in the project database. These
‘-‘,'n
\l~] 3 <
oy archived copies are tracked by the configuration management
=, tool so that they <can be retrieved when required to
.
o reconstruct a lost object. Object backup should be
P supported in several ways. A total system backup, backup of
~ . objects changed since the last system backup, backup of
SR
\I'c
:3: 66
S
& e

i y - PRI - < v "o o PO IR ‘et et .t et c . . - . -
AN Lo o A et A e e e e T T T e

ey 5 £ aArL SLACATACMEAEA AR ILEAS A LCS O C USRS AR AR A WAL G CCCA A L AC R A RS TR C A |

A
<

kf

;E :f:. subtrees or individual objects, and backup of a single

g% baseline.

;;: Users of the system must also be allowed to use off-line

vy

25 storage to store seldomly used objects from the project

ZA database. The directory entry for these objects and

:2? specific attributes should be maintained on-line with the

S

‘ﬁz data portion and the remaining attributes stored off-line,

:g\ releasing the disc space previously held by the object. One

:tz of the attributes maintained on-line should completely

&E identify the tape volume and index required for recovering

éi the object from tape.

:f This method of object recovery 1is supplemented by

3j recording a detailed history of designated objects in the

(39 system database. This history provides the information

o ‘N,._)
/ - e

necessary to determine the tool used to create the object,

e
Sigl the other objects used as input to the tool, the parameters
g id ¥
. applied to the tool and a script of the commands executed by
l,’*
o,
g the tool. This information is all that 1is required to
c:sQ
&5 reconstruct a lost object from the most recently archived
g—
- predecessor. This capability is protected by maintaining a
gt
»
3} reference count for every object and preventing the deletion
«
;3 of an object as long as the reference count is greater than
r zero.
N
;:f The requirements and evaluation criteria for the task of
h Y
»
JEY maintaining reliability are listed in Table VII Reliability
Requirements.
S
» .' ,.'
1’ ? e
7 67
yiod
Y“
A
-~
A
ﬁ'
VESEOCN LN 1 N O (AR NI IR T R RN O A NP R L, (R T RSP NN R RN

it)
efs"a" e

-~

SRR IR “ MM

P ES L

-

IR Jo ST

R

2 8 8 8 4

L v o]

- | PO A

&
¢
b

NSNS

TABLE VII Reliability Requirements h

N

K

Requirements Evaluation Criteria g
1. Maintain off-line backup. Permit backup of entire g
database. =4

Permit backup of changes %

since last backup. g

Permit backup of subtree of)

database. -]

Permit backup of baseline. N

=

Reconstruct database or
baseline from backup.
Maintain index of backup

tapes.

Allow users to store and

2. Maintain off-line
upplementary storage. retrieve infrequently
used objects off-line.
Maintain, in database,
specified attributes of :
objects stored off-line. X
3. Maintain derivation Record input objects and tool g
history. used to create object. -
Support forward and backward]
tracing of derivations. -]
Prevent deletion of input N
objects as long as :
derived object exists. g
"
Lo g
Maintain Object Attributes (A22). Many of the &
capabilities of the configuration management tool will
depend on the use of attributes of objects stored in the
project database. This capability must be made available to
users of the system and designers of APSE tools. The
capability for maintaining additional attributes provides

the means of developing an integrated APSE.

v .

- Pl -. - '1 .l c-.l .. .l '.. .h' 'A- .-‘.l- - . ' "-~l-..".--i' . l.§'~.‘..“- . .) . ~.
AT '.r".l:".!j'i}.-\.- TR I VOPEIIYI § y S V v AS Y WA VU AR AR SO SOAS

68

~ et at o YatL.

RIS B SR Tt R i i ™ S sl AL S AL SNILINS I Sl Sl Say Rdec-td o ~n e B A0 { AR R A AN s A %] Tw*..,v\‘\u'vt:T
. - T . . < - “ . v - - . . . " RS - -t a” . . DR g . . . e A .l N R

Attributes maintained by the <configuration management
tool can be divided into four categories (Texas Instruments,
1981:3-3). First, the configuration management tool must be

able to automatically maintain information in areas pre-

n defined by the environment. For example, the derivation
%;3 attributes of an object must be known by the environment to
Sgﬁ permit reconstruction of derived objects. This data should
R be maintained without operator intervention.

:§§ The second category of attribute data includes
5

~Li: information required by MAPSE tools, but provided by the
E:i user. An example of this type of information 1is the
ff; identification of the target system for a module of <code.
??? This information is required by the environment when
{}i ‘r3 invoking the <compiler, but must be entered by the user.

:;i ~ Once entered into the environment, this information should
éiﬁ be available for use by all tools in the environment.
-,

Tj The third category of attribute data is defined by the
jﬁ# user and maintained automatically by the configuration
:}E management tool. This category of data includes information
vi: available from various tools in the environment that is not
;ég normally required by MAPSE level tools. This information
§§5 must be stored and updated automatically and be available to
f;f the user and all tools in the environment.

.:2 An example of this type of attribute would result from
.3;5 the addition of a tool that manages the audit process for a
.;: proposed baseline. This tool would require the addition of
R
'.*“"‘- 69

[/
4

&
2

,
oy

"‘

o
.

»

.'_" .l .‘ *
(ol

-

SN
'’
LEN

[y
a

‘l ‘. 4
AR
)

X

AN
e A

h
1

a0
LAY .
1 AP R R

e
L]

1Y

;

¢

v 4e
.
»

.

.
]

[y

P
a

~
~
.

.-‘ -

o
”

attributes that indicate the individuals that must evaluate

the objects in the baseline, These attributes would be
added automatically by this new tool and later used by the
tool to monitor the progress of the evaluation. A possible
use of this tool would be to monitor the progress of this
thesis. A single list of the readers and sponsors would be
stored in a file. Whenever a chapter is released to the
readers, an approval attribute for each reader would be
associated with the chapter. Also, attributes that point to
a comment file for each reader would be maintained. As
readers review each chapter, their approval attribute would
be changed to reflect their approval or disapproval of the
chapter. To check on the current status of the thesis, the
tool would check these attributes on each chapter. A report
would be generated showing who has approved, disapproved or
not evaluated each chapter. The same tool could access the
comment files to produce a more detailed report.

It is this <category of tools that provides the
flexibility required for adding the tools necessary to
create an integrated APSE. This capability must be included
in all MAPSE implementations, however, no MAPSE level tools
will utilize this capability.

The last category of attribute data 1is defined and
maintained by users of the environment. An example of this
use of object attributes would be the addition of a new

attribute identifying the reason the object was <created.

T e % ettt AT At A" A" -
ORI LN RS RTINS

For erxample, the addition of a 'bug_id' attribute that
contains an identifier of a bug that the engineer |is
attempting to correct in his project workspace. If several
modules were modified, the engineer could create a list of
the versions that should be used to test the fix by
retrieving the file names of the objects whose bug_id
attribute matched the bug_id identifier under study. This
list would provide the names of the modules to be used to
compile a new test version. If the test failed, these
objects could all be deleted by a single command deleting
all objects with the correct identifier.

Like the previous category, this category must be
supported in a MAPSE, but will not be used by the MAPSE
@ tools. This data must also be available for all tools in
the environment.

The first two categories of attributes provide the
information necessary for MAPSE level configuration control.
This information 1is maintained in the form of attributes
that describe and identify objects in the database. In
Table VIII Attribute Types, the attributes that must be
maintained for effective configuration control are listed
and identified as being either category I or category 1II.
Categories III and IV of attribute support must be provided
in a MAPSE to support further expansion of the environment,

but will not be used by MAPSE tools.

71

i N Nt S S N VO PR N T IO N N N S T S i O AT W
L ACA ANy S I W e A I AN A A N RN I A APPSR TiE L VA SRR ST e q';:';t'L!'Lz':u“-'L-'-1‘“‘.‘

Ay
. .

-t~

4@’

G

" .. " o

a4

o
a4 &z

Neley

TABLE VIII Attribute Types

Attribute Description System Provided User Provided
Tool creating object X
User ID X
Input database objects X
Date/Time stamp X
Variation/Revision code X X (1)
Script of revisions X
Parameters to tool X
Purpose of operation X
Reference count X
Object type X X (2)
(e.g. text, code)
Target system X

NOTES:
(1) Provided automatically when sequential revision created
or manually when new variation created.

(2) Provided automatically by some tools (e.g. compiler,
linker) and manually with others (e.g. editor).

To satisfy the requirements for the task of maintaining
attributes, the CMT must maintain object attributes that
describe the objects and directories, maintain object
associations that ©provide the necessary 1links to other
objects in the project database, support APSE expansion by

allowing the addition of new attributes and associations,

and allow users to use these attributes and associations as

72

SO R I

I '_-.~. . “4._"\._‘ .'--.\k\i'~ SN
AR | :‘L'_L',LT PRI PR L R N WA R OREY, T T s T S I

A L
gl

I.I‘A

pe

-
.
-

ha

[N

)
s am
SN

RO s i F
.'t,'\","‘. AR . RSO

Shwad

...S" ’ .‘

[-‘."-.
° ‘I'.l 4

et

RSEY
CR)
g

2. .
. VR Y S S 6P

identifiers for objects stored in the database.

The requirements and evaluation criteria for

maintain attributes are 1listed in Table IX

Requirements.

73

.. S T T S O e o R TR C e N R L S I
& e e e e L T T e T e e . N O TR AT
Al A aatatadaloded o Rata ke o s m o e a iy R et s Attt

the task

Attribute

AT L

SRS AL AL Sl R R,
A tatat L!‘h‘i“‘f. Canfl 2an

LN .
f
",‘_"_ .

J .
TABLE IX Attribute Requirements
> .
i Requirements Fvaluation Criteria y
‘~\. d
3- 1. Maintain object Provide attributes for every '
; attributes. object and directory.
- Support addition of user ‘
- defined attributes. X
N Maintain attributes
- automatically when
- appropriate.
- Permit attributes to be
\ modified by system users.
D 2. Maintain object Provide associations for it
ol associations. every object and]
L directory.
e Support addition of user i
= defined associations.
\i Maintain associations d
:ﬂ automatically when 1
t; appropriate. ’
- Permit associations to be
b t[@ modified by system users.
‘” Insure that associations are
<. not affected by changes
) in path names of
v referenced objects.
*
" 3. Support APSE expansion. Provide automatic attribute
o support for user-added
i tools.
> . Provide automatic association
Wi support for user-added
- tools.
= 4, Support retrieval by Permit retrieval of all
- attribute value. objects in subtree by
- attribute value
b0 reference.
- Support use of associations
; as input to APSE tools.
LN
-
@
NI
YRS
. L2
A
" 74
-y

| I

.
"

>

-

P T e S e atata et et v e e e eata- DI
e et e e e e Al e e T e LN S RICRR R
WP SN IV P PN 5 VR R U A A I I P MR KO IS P Y SIS AR AL o LY v, ¥

AP ¢

.

<
.
.

&
)

.
e 4 a

D
"
P

]
ol
S
‘e
.
‘A
8.

J
[}
1

e Yol
s .
b

R

-
e a et
DL T e)

[N

NN
Sy

e
)
s
L]

-

a
Y

LA S X

A

o

IV Evaluation of the ALS

The Ada Language System (ALS) is an initial Ada
Programming Support Environment designed and developed by
SofTech, Inc. wunder contract with the U.S. Army (contract
number DAABO7-82-C-J151). The ALS is designed to be a
complete MAPSE satisfying the objectives of Stoneman
(SofTech 1983:1-7). The configuration management features
of the ALS will be evaluated in this <chapter using the
evaluation criteria from Chapter III.

Before presenting the evaluation, a brief introduction
to the structure of the ALS and the configuration management
features will be given to help the reader understand the

terms and tools discussed in the evaluation.

Introduction to the ALS

The ALS is a programming environment designed using the
four layered model of Stoneman. From a user's perspective,
the ALS consists of an ALS command language, a set of
software tools and an environment database (SofTech,
1983a:1-1). The wuser uses the command language to invoke
tools that create and manipulate objects in the database.

The ALS command language is a simple programming
language that is designed to support interactive use using
the syntax of Ada. The command language can be invoked
directly by a single command from an interactive terminal,

or a series of commands can be placed in a command file that

75

-

P P TR G N

. R SR N S S ~

-
-

]

>

‘- -.‘-

wod

\-'.:J'

AN will invoke each of the commands in succession whenever the

YA A

(;) command file is called. The command 1language supports
Cor

\
DA structures of high level programming languages including
‘..:_‘.

W assignments, loops and conditionals. These features are
{ designed to permit wusers to create command files that

i , o« . .

X perform tasks not provided by any single tool in the ALS.
.I. «

:;{ This allows wusers to customize their environment to their

R

\ own particular requirements.

The next component of the ALS is the tool set. The tool

set consists of an expandable set of tools that are

available to the user through the command language. The ALS

tools are designed to support development of Ada programs

:T{ throughout the entire life cycle. Tools can be added to the
t C:} toolset either by addition of command files to the tool
‘:_\ °
é&: directory or by writing and compiling new user-created
L

-~ .
Bl tools. A1l of the KAPSE functions that were used in the
u-‘: -

' initial tool set are available to users in system libraries,
.'j"..J
Sy for use when developing new tools. These libraries provide
:{b the capability for expanding the APSE as required in
Sy

\‘T Stoneman.
E{f The last component of the ALS 1is the environment
\;:‘-
3&: database. SofTech's own description of the database varies
(&' considerably from one document to another. In the Users
j3£ Reference Manual, the database is described as a
AR
?iﬁ "comprehensive database under full configuration control"
el
e T, . .
@ (SofTech, 1983a:1-3), while The ALS Textbook describes this
\:-:: r:.":
)
:‘:':'4 76
i
Yo
i
.,

; :“}%}%'\'ugu'.'%'“:%}“'n:w e e e N N N e N T e R Y e SN N W T Tt T AT TN

component of the ALS as "a file structure called the

environment database" (SofTech, 1983b:1-7). The ALS
database does not support the operations traditionally
associated with a relational database system (e.g. «cross

products, selects, and joins), but does rely heavily on tree

walking algorithms traditionally associated with
hierarchical database systems. The environment database
could be better <characterized as a hierarchical file

structure similar to UNIX with some added <capabilities.
However, the term 'database' will be used throughout this
thesis to be consistent with the ALS documentation.

The ALS database consists of a hierarchy of directories

and files just as in UNIX. A single directory can contain a
combination of other directories, files, and any number of
the other components of the database. The only other

components of the ALS database are variation headers and
program libraries.

Variation headers are similar to directories, but
instead of indicating a logical decomposition in the project
hierarchy, they indicate a grouping of equal alternatives at
the same level of decomposition. In the example from
chapter III, a variation header would be used to structure
the afferent and efferent subtrees of the hierarchy (chapter
111, page 43).

The 1last component of the ALS database is the program

library (PL). The ALS documentation treats the PL as a type

77

TP RN S

..'.-..‘ ~' .,.-\-‘..-.\- ~ LR .;._-.. AT T A e
AR A D S, O N R N R T L R IR T R R,

ey of directory, however the operations and components are
totally different, so they will be treated here as a
separate database component. The PL is a directory used
solely for —compiled or linked programs. All compiled
compilation wunits and linked object files must be placed in
a PL. The PL consists of directories and containers. The

directories within a PL are created automatically by the

. compiler, based on the internal program structure, with a
FNR

f@- directory for each package and separate procedure. In these
j"{'

ol

VG directories are 'containers' for each of the objects in that
Y

. \. L]

. package or procedure. For example, compiling a package
A
Y o N

xj} called Math_pax and a separate procedure called
o

oy

f:: Newton_Romberg into a PL called MyLib, would produce the
{ ‘ED structure shown below:

.-:}-:)

2

e d MyLib

Sl d Math_Pax

) f Math_Pax.SPEC(1)

2 f Math_Pax.BODY(1)

r e d Newton_Romberg

Lo f Newton_Romberg.BODY(1)

T“f d -- directory
4‘....' f —-- file
-3;: (n) -- revision number
nE
-:\.:_
i;f These program library entries are based on the actual
. names used in the Ada program and have no relation to the
'?¢ file names of the source files. The same PL entries would
o

*e l.- .
—iﬁ be made with all compilation units in the same file as with
Feptes - each compilation unit in a separate file. All packages
AONEIE

{::-

o e

Lat
PwC,

;@, referenced in a compilation or link must be in the same PL.
Each PL supports a single target system.
e A program 1library is designed to support a single

program with separate PL's created for each program under

gy development. For large programs, each team or user would
~

)

e have a PL in his workspace for compiling and testing his
o

] . . .

b > portion of the project. A single project PL would contain

all compiled and linked components after development and

o
32 separate testing were complete. This project PL would
25: eventually contain all compilation units for the program.

é;; ALS Support of Configuration Control

gg: The ALS is designed to provide "full <configuration
i . d!} control." The tasks required for configuration control are
KEQ ’ supported by a variety of ALS tools and features.

i;l The ALS tools are functionally grouped into sixteen
f‘, categories, one of which is configuration control. The
ié; tools included in this group perform some tasks that are
3?; unrelated to <configuration management, and some of the
iji configuration management tasks are performed by tools from
ﬁ%} other groups (especially the file administrator and database
§§§ manager). For this reason, the tools evaluated in this
4:; thesis will include any tool of the ALS that addresses any
igs of the requirements developed in chapter III. Tool names
:ﬁs will be listed throughout this section and in the evaluation
.; tables wusing all capital letters. Descriptions of the

79

I T R i B PR TV A T G R G R A C R, N VP - SRR AR R T L P PR T

»
o
o

‘l

‘)

e . S A
ARSI |
[

)
»
a

’

e T Yo

s

Tt At S

-

.
.

" 'l ‘.A '-l

1%

)
Y,

o o

o
.
-

P

NLY
*

#

LN

YO

~)

-,
T
RS

function and format of each of these tools is inculded in

the Users Reference Manual (SofTech, 1983a).

In addition to the tools that support configuration
management, there are ALS features that support many of the
configuration management requirements. Primarily this
support is provided by attributes and associations.
Attributes and associations are associated with every object
in the database. Attributes consist of a name identifier
and a character string value. Attributes are wused to
contain information about the object and are used by APSE
tools to control access and restrict operations performed on
the object.

Associations are named relations to other objects in the
database. An association consists of a name and a list of
pathnames. The pathnames can be either relative to the
object itself or absolute (from the database root).

In addition to the file structure established in the
database using directories and variation headers, the ALS
supports a team structure for users of the ALS. Each user
allowed access to the ALS must be listed in a system defined
file maintained by the system administrator. In this file,
the system administrator lists the wuser's identification
(last name) and the team or teams the user is assigned to.
The ALS supports a hierarchy of teams using a dot delimiter
to separate the levels of the hierarchy (for example,

Army_project.module_A.input_process.quality_assurance), just

80

i
53;

Y,

;}' 3 as it is wused in naming the hierarchy of nodes in the
(f b database. The team identification and user identification
E; are used by the ALS in creating and enforcing access rights.
ié' The ALS documentation states that a feature called the
'Zf 'current project directory' (CPD) and a command called
ﬁaj "CHANGE PROJECT' will be added. The documentation does not
‘Eg state how this will work, but it does show that the problem
;#: of controlling multiple projects in a single ALS is being
:E; addressed. If the CPD simply adds a top project layer to
f: the team_id attribute, and uses this extended team id for
‘;;’ access control, the requirements 1listed here will be
;:;. satisfied.

l}f The last feature of the ALS that must be explained
‘ N @E> before beginning the evaluation is the protected project
: database. The Project Database is designed to provide the
I configuration manager with a protected workspace for objects
f’ that have completed development and testing and are ready
/.

;i' for integration into the proposed baseline. The Project
:g Database will include a PL that will contain a copy of all
‘:: modules used in the project. The Project Database has
E% special access restrictions that only allow access using
13; special configuration management tools. These special tools
:Eﬂ are designed to support the requirements associated with
G; maintaining baselines,. The configuration manager protects

)
W
.

PO R R I)

the Project Database by specifying exactly which users will

have access to each configuration management tool as well as

Y KN

QPP
ol

LY

q.’i" 81
NS

v

i 8"

(X

S

R - -

..) LR I R A N 0
O i 7 W S W PR . . S

AL S N e ey DR LA SR A TTIEIRIT] A A AR A L ARLNARENA O S FIE AR > ;'i'-'v'j‘.?"'?

. e et .'.‘... e ..‘-.- ',‘_'.'.-... Ce e
AW N SRR S S . T B 5, SR SR R L S W KR SRR

£
AL
‘f%'&-
IRV LI LP)

‘Sﬂ‘w

—
A
5

‘
o
-

¢
W

Ea Y A

.
S .

72.2.”,
P

P4
NI

3

XXX
P § SRR AR

3

S
\

the access restrictions on each object in the project

database.

The ALS Evaluation

The version of the ALS used in this evaluation is the
NMovember 1983 release. This release is an interim product
provided to the Army and the Air Force Avionics Laboratory
for test and evaluation. It is not a completely implemented
ALS and the portion that is implemented has not Dbeen
completely tested. For this reason, the evaluation was
conducted in two phases. First, the documentation was
studied to determine how the ALS plans to address the
configuration management requirements. Next, the available
tools were evaluated to determine if they performed as
specified in the documentation and if they satisfied the
evaluation <criteria. Tools that did not function at all,
did not function as stated in the documentation, or were not
yet available were all evaluated based on the description in
the documentation.

The evaluation method described above and the guidelines
from Stoneman (Stoneman, 1980: Chapter 3) 1led to the
following evaluation technique.

First, the method the ALS uses to satisfy the evaluation
criteria is described. Next, a series of metrics are used
to indicate the status and usefulress of the ALS
implementation. These metrics are the implementation

status, the criteria success rating, and the simplicity

82

N : "._'..\‘-_'-.' -_'-.'¢_'..' ..'.'w_-' et TN AN T Y S g R N -gn
P A T R S PRI Y, P Yo Ty AAR&‘:&M‘:&M

P N " « . —w
LA S ® > . > A . ~ . W - e "I, AL A Al Ak T A N AN T A AN AH A R St S

N

A

('\' N rating. Each of these metrics will be explained briefly
ﬁhg below.

LN

AN The implementation status simply shows if the function
SASN

R '
AR is currently implemented and operational (I); the function

is implemented, but has unresolved deficiencies (I-); the
function is designed, but not implemented (D); or is not,
and is not scheduled to be, implemented (NI).

The <criteria success rating is a partially objective

rating of the level of success with which the evaluated

oS

function satisfies the evaluation criteria. The value of

S

»
4

this rating shows if the ALS automatically satisfies the

\'\
S
eN
' ™ "

e

criteria (S), satisfies the criteria using a combination of
ALS tools or features (S-), or does not satisfy the criteria
(u).

Criteria that are rated (S-) will also receive a rating
indicating whether or not a command file can be wused to
satisfy the criteria. A rating of (S-/CF) indicates that a
command file will satisfy the criteria. A rating of (S-/M)
indicates that the user must manually invoke each tool or

feature every time the function is performed.

by Ay
P

rrAS S

,l

S h Yy

In areas where the ALS does not satisfy the criteria, a

Py
o+, >

rating will be added indicating the ALS support for the

~
ro,
P. .

development of a tool that would satisfy the criteria. A

rating of (U/S) indicates a simple combination of 1library

- functions would satisfy the criteria. A ra.in of (U/U)
=y g
o, e indicates that a new tool would be required. Criteria
-',\ K ~-‘..4
EN -
s
5\‘::. 83
GO
A B
‘-.\
SN
AN

o et e, e e ettt S N

o AT N e e et L e N T T S At e e e L o NN
ARV S RIS o I, PP N R o P P R R R R R A e e e e '.."\

LA uR i tai s el e Sl vadl A e A A A SR i A A
AR A N A A A R

': St receiving this rating either cannot be supported using the

ALS technology or else major modifications would be required

.ﬁ_; 1
-éz before the necessary tool could be developed.

= J
'32 Finally, a simplicity rating is given to each function]
DS that is implemented and operational. This rating ranges

:E from A to F, with C equating to the simplicity rating that

?: would be given to a UNIX 1like function. Although this

\;‘ rating is very important in determining whether or not the

x

;)S ALS functions will be used or bipassed, the rating 1listed

:$: here is only one user's evaluation. A more valuable rating

would be made if a group of users were asked to rate the
- function and the results were compiled.

The results of the evaluation are tabulated in the

®

g Appendix. The tables are grouped by the functional
Ei breakdown from Chapter III, with a single requirement
1:5 evaluated in each table. 1
:E General Discussion E
i; A summary of the information contained in the evaluation

tables developed during this evaluation would be impossible /¢
s to the large number of topics considered and the quantity of

.7 information presented. Instead, in this section general

2, SR f
4 Al »
PP I WP S e

conclusions regarding the suitability of the ALS to the

.

- . {
<o configuration management task will be presented. This

{
0y R, 1
e discussion will include some of the more significant results :
-.' 1
‘e . . 1
@ from the evaluation tables, providing readers with a broad

\.n '\;4 .

SRS

™,

N 84

b \‘

X

.

~l

-

| &

.

€ 0 e e P R O O L C PR R -t
RO B R] _..‘_\ v“:‘ J'_'-'.\-.:n'_\!' :' o \':. u'L\l'.\\":' J..\ > \'.‘d'.\ 1':’-\})‘:‘ c\?f

Y.
-

NI AR Tt R S0 S il B R S T T s et b S LI A S R Rl AP I T

overview =f _(he evaluation of the ALS, and giving additional

-~ ry w7 "z -

information concerning user acceptance of the ALS. The ALS
will be viewed on a much broader scale to give the reader a
big picture of the ALS's strengths and deficiencies.

ALS Deficiencies. The greatest and most harmful weakness

P B B |

of the current version of the ALS is its slow response time.
The system currently hosting the ALS is not dedicated to the
ALS, so precise evaluation of the ALS response time was r

impossible, however the response on a 1loaded system to

relatively simple commands (e.g. 1list directory) was orders E
of magnitude greater than the same command on a heavily é
loaded system using UNIX (e.g. the AFIT VAX system), or on ;
the same system using VMS instead of the ALS. The slowness ;
of the ALS is more than a nuisance, since users will quickly E
look for ways to avoid using the ALS as much as possible. E
The end result will be software developed in an ad hoc 5
manner and delivered on the ALS simply to satisfy DoD é
requirements. ;

A second, and related, weakness is the command language. ;
This component of the ALS relates to all tools, and was ;

therefore not specifically addressed in the evaluation
criteria. However it is worth noting that the command
language presents another significant detractor from wuser |

acceptance of the ALS. The ALS command language uses an

arbitrary combination of complete words and abbreviations,

with word pairs sometimes simply concatenated and sometimes

» eI L L

85

LR

o~

e S S A P T S B R R T gt «Sata™a " T AT T PR T T EIROE
.'t:w;!'&'-l.:.a_' ..}.A’i'.‘.'.n‘)_.n'z:n‘;‘m‘ﬂ\h '.\\ﬂ‘..\.'\.‘-i&': AT YL e

A AC it e A O S A IR

seperated by the underline character. The result 1is a
command language that is difficult to remember and use. The
situation would be greatly abated if cormand substitutors
were better supported. Users can create their own list of

substitutors that can be used to replace the cumbersome

command language, however each use of a substitutor must be
prefaced with the symbol '#'. Also, the substitutors are
not visible in command files unless they are either

initialized within the command file or else declared as
global substitutors initially and in every command file
where they are used. The Stoneman objective that the
environment be suitable for both novice and advanced users
is addressed by providing substitutors to permit development
of a more comfortable command language, but the current
solution should not be considered acceptable.

The next problem area is the support for expansion of
the ALS. The ALS does allow the addition of an unlimited
number of new tools. These can be added wusing either
command files or by compiling new tools using Ada and the
available program libraries. The program library support is
excellent and will be listed as a strength of the ALS, but
the capabilities provided by command files are greatly
restricted. The command language supports the necessary
constructs of a programming language (sequence, condition,
loop), however there is no way to use the results from one

tool as input to another tool in the same command file.

86

AR Sl nadh S i Sead

T

AD-A140 982 EVALURTION OF AUTOMATED CONFIGURRTION HRNRGEHENT TOOLS

’ N ADA PROGRAMMING. . (U) RIR FORCE T OF TECH
RIGHT -PATTERSON AFB OH SCHOOL OF ENGI M S ORNDORFF

UNCLASSIFIED MAR 84 AFIT/GCS/EE/84M-1 F/6 5/1

!

.,
P |
7
¢
X
P,
¥
b
»
‘N
'
Py
¢
P
‘h
’\
{ I g, . et —— e e - -
¢ . , =
m\,
o 1
b .
R N o~ o
o o H . (o] =
m.. L L2 LA I._ ME %3
’ [= 381
s S E 5
5 N EEEL g
3 EEE] =3
7 D29 344s. ! gz
W. E FEFPPIY h E .
. 2 <
> | 2
% 1 0 & m
2 . — 5 2
- ° e
: T I T
. —— —— o
_-.. e m W
) E3
‘I
:
F-ﬁ
2 .
. .
3 e
4 -
'
',
n

e 8
Can

Pt
>

‘.I

\-ﬁ‘r‘c

‘..l' r
fﬂh'

<

' ‘gkﬁfb

)

P AL
'

PACA

7.2

a

- » .&'I
A

s,

a
',

.
.

A

For example, the author attempted to write a simple
command file to add a 'share' access attribute to each file
whenever the editor was invoked (the ALS requires read
access to the parent directory to invoke the share tool, but
currently fails to operate correctly unless the sharing user
also has write access to the parent directory). The desired
initial value was the creator of the file. The first
obstacle encountered was the lack of access to the «current
team_id and user_id from within the ALS. A simple solution
to this problem was to list the 'write' access attribute
after creating the file and initializing the 'share'
attribute with the same value (the 'write' attribute is
always initialized to the creating user's id).

The final and unsermountable obstacle to this simple
command file was the inability to get the results of the
'LSTATTR' command (the ALS command that retrieves the
current value of an attribute such as the write access
attribute) into a form that could be used as input to the
"CHATTR' command (the ALS command used to create new
attributes). The output of ALS tools is designed for screen
display, and no method of separating the labels from the
data and using the data in a later command is provided.

The 1last negative observation concerns the support for
user-added attributes and associations. The ALS goes to
considerable trouble maintaining attributes and associations

for every object in the database. The usefulness of these

87

Y AT NOI AW W T N O AT R A L) O SR T TR P A v

ST S S T R TSR TR AT

features is greatly reduced by the lack of support for the
common database operations. The only use of attributes that
approximates a 'select' is in the use of variation headers.
When selecting objects under a variation header, the user
can specify attribute names and values instead of using the
variation name. This allows the user to create variations
based on multiple characteristics, with a separate attribute
created for each of the distinguishing characteristics.
This feature provides excellent support for variations and
should be expanded to permit similar select operations in
conjunction with other ALS tools, so that attributes could
be used to organize a project instead of merely providing a
labelled comment field for users.

ALS Strengths. The ALS has many features that work well

towards the goal of effective configuration management. The
Project Database, the support of multiple variations and
revisions, the off-line storage system, the library support
for additional tools, and the support for derivations all
represent significant advances in the 'state-of-the-art' in
programming environments. The support for variations and
the library support for additional tools were discussed in
the previous section. The remaining features will be
discussed briefly below.

The ALS design for a Project Database is probably the
most significant advance in the area of configuration

management. The Project Database brings the project

88

A 0k Sah AL G ale S AR Rt RS N S A A A AT I P R

|
ggﬁ o development under the control of the configuration manager,
;iv' ks with a specially controlled set of tools designed for the
“43 task of configuration management. This arrangement not only
gsj provides good initial support for configuration management
Rt (especially baseline management), but also provides an
é}? excellent basis for the addition of advanced configuration
%é% management tools as they are developed. The separation of
w34 the database into two distinct areas with one for project
'g}ﬁ development and one for controlled configuration management
E"% allows designers of new tools to address the needs of
.‘?9 managers separately from the needs of engineers, and
;E%: therefore permits the development of specialized
’;3‘: configuration management tools.
- Q:; The ALS's support for off-line storage provides several
ﬁéﬁ tools for the various requirements of system users and
ﬁ?ﬁ administrators. The ALS uses three sets of tools to support
o the three different functions of off-line storage: backup,
;:* supplementary storage, and baseline storage or transfer.
fsp These three tool sets are specialized for a particular task,
:f; and therefore provide automated support for a complete task
é?gr rather than requiring a combination of several more general
\f purpose tools. The supplementary storage tools are
Eif especially convenient, providing users with an excellant
‘Eg facility to reduce on-line storage. A single fault in the |
;Sf; current design requires the person performing the actual
b o

. tape operation (usually the system administrator, wusing
N
! a

';; 89
‘i;

%
T T S T o S o T T T ST R T I

=7
. 4

$ 4 €%5 ROLLOUT) to have attribute change access to the objects
(‘: d being transferred. This requirement needlessly destroys the
}25 access control features of the ALS by giving someone without
;Eé any valid requirement complete access to these objects. A
& change to check the attribute change access of the user
fsﬁ requesting the transfer to tape (using ARCHIVE) would solve
.ia this problem without further complication.

ol The ALS supports derivations by automatically recording
fgg the tools used, the input files, the command format, and the
:: derivation count of the input files whenever a derived
;: object 1is created. Derived objects are created as output
5:& from a certain class of tools called 'generators' (e.g.
;(§ compiler, 1linker). Users can create new generators by
A qE; developing a command file and then using the 'MAKEGEN' tool.
;13 One feature associated with derivations that is
:Ef particularly significant in that it would be useful
> elsewhere in the ALS is the recording of the VMS filenames
22% of input files, Input files are recorded in derivations
%3: using both the ALS pathname and the permanent filename
%: associated with the file under VMS. The wuse of the
g? permanent filename allows the ALS to always be able to
$£ locate the original file and decrement the derivation count
~ - when the derived object is deleted. This prevents objects
;gg with derivation counts greater than zero from being locked
'gs in the database whenever their ALS pathname is changed.

This support for maintaining derivation counts is excellent,

and should be expanded to allow users to maintain
associations with objects 1in spite of name changes or
changes in the project structure. The ALS has the
capability to track these changes, but it is not available
to the users.

In conclusion, this evaluation has shown the strengths

and weaknesses of the ALS's support for configuration

management and tabulated the ALS's effectiveness in
addressing each of the configuration management
requirements. The results presented here must now be

reviewed to determine the trade-offs that must be made so
that a satisfactory implementation can be produced given the

prevailing time and budget constraints.

i A g S i ik Sl 4 T te W WS W Ny N B N AR A

N

".'\

:,I Wi

N

SN oo V Summary and Recommendations

5 TN

oy Summary

;;3 In this thesis, the task of evaluating automated

A

N .

éﬁ, configuration management tools was addressed in three
phases. First, the discipline of configuration management

'.

was defined from the perspectives of project management and

o
sl 8BS

i HOw

e

project engineers. This definition was based on current DoD

Eﬁ{ policies and software engineering practices.

gﬁg The next step was to wuse this definition of
éfi configuration management to develop evaluation criteria for
gf configuration management tools. The evaluation criteria
", ¢

§$ were based on a requirements analysis of the configuration
‘gg management task. Evaluation criteria were developed only

‘5’ for those areas of configuration management designated in
Stoneman, the DoD's requirements document, as requiring
support in APSE implementations. This limitation was
imposed to make the evaluation criteria appropriate for the

evaluation of initial APSE implementations designed to meet

the 1980 Stoneman requirements.

& In order to develop the evaluation criteria, the task of
B! configuration management was functionally decomposed into a
3 hierarchy of component tasks using the Structured Analysis
2 and Design Technique (SADT). Each component task was then
X stated in the form of a requirement for Ada environments,
and evaluation criteria were developed. These evaluation

I 15? criteria were tabulated and presented in Chapter III,
]
o

N 92

W " e - @ -, N, €.~ . | LR - - - - .
A5 SRRV Y uﬁdﬁ;ﬂﬁhﬁdﬁhﬂ!ﬁﬁdﬁ&

o*v
N5

The final phase of this thesis consisted of applying the

proposed evaluation <criteria to the Ada Language System.
The Ada Language System was evaluated using an interim
version of the software and the design documentation. A set

of metrics were used to measure the ALS's effectiveness in

satisfying each of the evaluation criteria. The

implementation status of the evaluated function, the success

of the ALS in satisfying the evaluation criteria and the

simplicity of the ALS were all addressed using these

metrics.
Considerable emphasis was given to evaluating the open-

endedness of the ALS. In each area where the ALS received

less than the highest success rating, an indication was
added to show the ease with which users of the ALS could
develop additional tools that would satisfy the evaluation

criteria. This rating is considered most important in

determining the robustness of the ALS, as it shows the

support inherent in the ALS design for improvements and the

addition of advanced functions.

The processes just described produced three products.

First, a detailed definition of the configuration management

task suitable for requirements analysis was developed. This

definition can be further analyzed as the role of the

configuration management tool is expanded and additional

needs are addressed.

93

R o © AR A A Ja, ia.die ¢ bt it A D ok R Y A% ek b A Wi e i i ah Al A AL LA S DI RIS L Sl e e TR T

A o :

<4

I\

ey

‘4

o

"ﬂ“’ (£

ViR 6 Second, a set of evaluation criteria, appropriate to the

A

KK evaluation of Ada environments designed to meet the 1980

N

U . .

o Stoneman requirements was developed. These evaluation

) A i . .)

Y criteria are implementation independent and will be wuseful

,51 in comparing various environments as additional APSE's are

t

‘&{ developed.

fi The third product was the actual evaluation of the ALS.

i;. This evaluation can be used by the Army in determining the

&g acceptability of the proposed design as well as by system

N designers in determining areas for improvement in future

ot releases of the ALS.

'~

o The thesis presented here will assist the designers and

o

‘4
developers of software engineering environments by providing

< 35 a set of evaluation criteria that will give an accurate
indication of the potential for success of a proposed
programming environment. The Dbest test of a programming

A environment measures the acceptance and use of the

Ay

K environment by software developers, and the improvements in

bk productivity, reliability, and maintainability of the

g; software produced using the environment. Unfortunately,

i

159 ,

55 this test cannot be made until after a complete release of

A

! é s

¥ the system is ready and a substantial investment in fielding
the environment has been made. Hopefully, the evaluation
criteria presented here will give an accurate indication,

¥ early in the development process, of the eventual success of

“.A

3 a proposed design,

B

Al 94

kN

<

77

)

‘t.

"4 ' ..-' Y. ..~ .. ~ \ £ .- . .'.-... o -¢“'. < -('-{"'.'v.. " %0 3 * \.\ W “.\ X L}

Ay

iy f
A
a

Y’y -?(

’
«

3
[P

B
.

h
k)
S8
¢

XA

iﬂ"tﬁq

-
-

§F

¥, A - e v .Y
AR

4
0

| 4wt

’d",

This thesis did not attempt to award an overall
acceptability rating for the ALS. Rather, a comprehensive
evaluation of individual requirements was developed,

accompanied by some general observations concerning the
design and performance of the ALS. The intention was to
provide the Army with enough information to evaluate the
current status of the ALS, make knowledgeable trade-offs,
and initiate changes that will improve the ALS prior to its

acceptance and general use.

Recommendations

The recommendations that result from this thesis fall
into two categories,. First, recommendations for the
developers and procurrers of the ALS are made. Second,
there are recommendations for designers and researchers that
will be working on future environments that will provide
advanced functions over the current generation of
programming environments.

The next step that must be taken by those involved in
the development and fielding of the ALS is to use this list
of deficiencies for determination of the changes and trade-
offs that will be made in future releases of the ALS.

The recommended approach is to first give prospective
users the evaluation criteria presented here and have them
rank them in order of importance. The next step would be to

use this information to determine the changes that must be

95

OGO NS A A S U s LR SRR A, W LD Gy

made before release of the ALS and changes that can be
deferred to later releases of the system. The 1last step
would be to have representatives from prospective using
organizations apply the evaluation criteria to a later
release that has incorporated the approved <changes to

determine the ©potential for acceptance of the ALS when

released to software developers.

The areas for future research and development in the
current generation of configuratior management tools include
the configuration management tasks not addressed in Stoneman
(configuration identification and configuration status
accounting) as well as advances in the areas addressed here
and in Stoneman,

The next generation of software engineering environments
will include the support of a particular methodology. The
first step that must be taken is to determine an acceptable
methodology for software development and then develop future
environments to support and enforce this methodology.

The current generation of environments have attempted to
address the tasks that are performed during the software
life cycle, and develop tools that automate these tasks.
The result is a collection of tools that work together to
simplify the activities of software development, but do not
force the use of good software engineering principles.

The role of future environments must expand to include

the enforcement of a methodology that will improve the

., \;'_

~

a{{ﬁ:'} 9

A
o

-
A
LR iy

A

P

A7, Y,
At

s
-t

N A

N

4 A
L %

W

DL

S,

- o Q. X,
T XY

AN

\

XX

)

s

<

DU T Jha Tk S

- \' \
s*""'

g

software development process. The Navy's Software
Engineering Environment Work Group has taken the first step
in this direction. Their work provides the basis for the
development of the next generation of configuration

management tools. The development of a software
engineering environment that not only simplifies the task of
software development, but also promotes the use of good
software engineering practices must be considered the
immediate goal of the software development community.

The emphasis here has been on the task of configuration
management and the tools that would support it. However,
satisfying the evaluation criteria developed here does not
represent successful automation of the task of configuration
management. This study merely measures the affectiveness of
achieving a currently obtainable level of configuration
management support without the delay that would be necessary
for the development of a satisfactory methodology or the
development of advanced tools.

This is not a stopping point or even a ma jor advance
into a new area, but merely represents the collection of
available technology in an effective manner to create a
working system that can be expanded once a methodology has
been adopted and technological advances become available.
The need for more advanced systems that add order to the

descipline of software engineering is great, and the ALS

represents a first step towards acheiving this goal.

97

PSR P N NPy

AR A ACIA M WAL AL X R EGEAC A LR AR AL AR A AR KE M A AR At it Jt it bt B S D e ";-‘_-_"."'-‘_"*

?- o The research presented here provides a means for
{. evaluating currently obtainable support for configuration
o) management, as well as the theoretical background necessary
N for additional research into more advanced support for
configuration management. This information coupled with the

S development of an acceptable methodology, forms the Dbasis

- for the next step in the automation of the software

engineering discipline. i

£) [} . ‘ . »
YOO

[

R 3]

oy

L1 (RN

S .
-v'l. .l

P

oy l‘ .
‘-‘.'\.'

)/
»

5' A4
AR
‘o

""" >

98

X 1)
ot 4ok

Lo g it i i A SRt e T St
I A A i .1\’. Yv'i-\."‘-'q

_'

! . Appendix: Evaluation Tables

- : 4 -_:.._:.

(v R

“'; o,

ot .

,bc Key to Evaluation Codes

oft, -, —

¥

Implementation Status:

el .

§x’ I ~- Implemented and Operational

Y

R: I- -- Implemented with unresolved deficiencies

,] D -~ Designed but not yet implemented

g

Bl NI -- Not implemented or designed

]

L2

o

N Success Rating:

>,

'?¢ S -~ Satisfies the criteria

S

B

?j S- -~ Satisfies the criteria using combination of tools
s
. !E} S~/CF -- Command file will satisfy the criteria
NN 2 S~-/M -- Tool combination must be manually invoked
) \’:"
5N U -~ Does not satisfy the criteria

.:p)
N u/s -- Simple combination of library functions
would satisfy the criteria

s u/u -- New tool required to satisfy the criteria
J";:/:

P o

3858

AL Simplicity Rating:
—e

;l: A -- Simplest
) \':
AN C -- Equivalent to UNIX like function

o
?ﬁg F -- Most complex
S

-

¢

®

S

i

v a
K

e

*ST3A3] wWeal jo ‘sweaj jo

9 S I Ayc1ei9Ty ® JO SISTSUOD PT wWEI] sToa91 atdrirnuw 3j10ddng
*sSa23InqTille ssadde jo 3ied *sweal
q S I jusuodwod B SB PISN ST PI WeI] uU39M13q SSIIIEB [0IJUO)
JT{dulg SSooong 3JuawWalduW] uotjejuowagduy BII9]11) UOTIBN[EAY

rsues] ardr3iny 311oddng :3juawaarnbay

uorienyeay uoritriied (g) X ATdVL

100

*suor3itized

129fo1d ajedrIputr 031 pasn aq *s3%afoad
- S d TT1TM A1032311q 312%9f01g uUaiing I3Yy10 01 SS3IdB IDTIISIY
21T7dWTg $SS83J22ng§ Jjuawagrduy uotrjejuawayrdu] BTI31T1) uoTienteay

*sioafoxq ardrarny 3ixoddng :juawsatnbay

uoTienfeag UOTITIXRd (V) X TTAVI

R . .. MY Al o l.A-\D-J.J\J.Ql‘.- - 'Y o-.a A n&'
DIE DRax| AR | AR

*a7qeITIRAE ST

UOISTASI M3U U3YM pawWIoJul
jou I1asn -- paxrnboe

8q asnw 323[fqo pairnboe

JO UOISTADI M3N ‘I[qe[ieae

spew ATyed>Tiewolne *s323lqo
st 3123alqo paieys paieys JO SUOISTA3I
- n/n IN JO UOTISTA3XI maN -pajzoddns 30y M3U JO SI3SN WIOJU]

101

S ,17d I94Yl0 woaj sSIdUTEIUOD

a W/-S I jo Butieys smoTTe [003 FTJYINDIV
*seaie 13123loixd iayro worj *323fouad
S9913qNS IO S319S UOISTAdI JO 31s31 01 3deyiauUT
- W/-S -1 Jo Butieys smoyTe TO0O01 FYVHS 1U91STSUOD 3praoily
*siaqunu
UOTSTA31 [eTiuanbas yitm
v S I 3stx2 Aew aweu awes yirtm sidalqg *SuUoOTSTA91 aydrafnuw 3ITWId]
DI[duWIS SsaJong Juawardu] uotjejuawmafduy BT19311J) UOLIEBN[EAF

*aoedsyiom 193ut8ug apraoxg :3udwditnbay

uotienyeay uoTiTized (D) X AT4dVL

*sI1I93sn uo

P2210J UOT1II[3S uoTiIEBTIIBA *aan3dniis 3d2afoud
- n/n IN 31017dx3 ~-- pailioddns 3oy Jo smata 13sn 310ddng
*paida[as aq ued [nejyap *UOTIJ3[9S UOTIBTIEA S
- s/n IN apIM 3311qns -- pailrizoddns o) dTjewoline apraoid —

*uasoyd 3o0u
ST uoTjeTrTIea dT3jrdoods uaym
pasn aq 03 UOTJIBTJIBA S3II9[3S

q S 1 21nqriIlje uUOTIBTIBA 1TnEeJa(*UOTIBTIBA 3TNEI3IP MOTTIV
! *siTnejap atqerreae Ljuo
ﬁ 31e UOTSTA31 UIZOIJ 3JuUIIAIX
- qd d3/-S I 1S0W X0 UOTISTADJI JU3III ISOK *UOTSTA3I 3ITNeJap MOT[V

J1(dutg SSaj’ong Juawmatdu] uotiejuaumaiduy BT1931J1) UOT3IEBN[BAY

*ai1n3dniig 12afoixg tedtyszreaatry 3iroddng :3usdwaxrnbay

. uotienyeag uoTiTiied (q) X I14AVIL

NAN] BN LABNONN] AXAADIVY e AT RARLAT e T
X0 2t o AR NAOONAN, e a;ﬁ?sr e

..a NS a. gl

*Aieiaqrg

uowwod WOIJ SIdUTEeIUO0D *s3d3alqo
a A0/-S 1 3o 8utieys smoyre 1003 aitnboy Kxei1qty jJo Butieys MoOTTYV
- s/n IN ‘pa31xoddns 10\ *X3puUT [BUOTIJURJ IPTAOIJ
"TIVLSNI 10 L3ONl TTIum
139 30 3sn 1ayjoue sjuadaaxd *3WTI © 1B UOTISTAII
pue uorstaax 103j 333lqo 19pun 323fqo
- S a jJo Adoo 3no s)d3yd 1001 [I9 Jo Adod af8urtrs 3ITwWiayg
*£1e1qTIT 3yl o3 spew saBueyd *SatieIqiy|
: II® JO 931EBp puUEB BWEU IISN uowmmod utl sidalqo
- W/-S @ 3o Butristy sadnpoxd STTVISNI LST 031 sadueyd prolady

‘parttdwos-a1 aq
01 Ppaau SIS3UTEIUOD JFT NUIT
v S 1 01 sidwaiie 32afax [TTM I3UTIT]
*1d 3O 31S31 YiTM 3JUIISTISUOD
10U ISUTE3UOD uaym
q S I 39s 9inqtri3le ayrdwodax paay
"T1d 031 p3appe
12alfqo mau 3t Burrtduwod
-21 paau 1M sidalqo

103

- W/-S a Yo TYym I13sn ST[33 [0031 IJVAKWI *£1eIqQT] uoWWOD
‘14 uUOoWWOD WOIJ SIdUTE]IUO0D ut satun partrdwod
a W/-S I jJo Sutieys sSmol[® [003 FYINDOV JO £5U31STSUOD UTBIUTEY

Stidutg Ssaoong 3Jjuawartduy uotiejuamadu] B119311) UOrienteay

*S3TIBIQIT UOWWO) IprAaoxd :3uamaatrnbay

uorienfeay uotirized (3F) X IT4VL

>

RO

TN

FEIITITIVETNT

YN

SLNTe TN YIS FEITET T YT IR TN

T

ALY

~d

e

*sainqrilie
ssad’oe a8ueyd ued oym

d S I SouTWI931ap 2inqraiie adueyds 133e
*ainqtrilie ssadde Lue a38ueyd
a S I 031 I9Sn SMO[T®e puewWWOD YILIVHD
dT1dutg sSs395d5ng Julwayrdug uorlenyeaqy

*STOIUOD
ss3adoe a8ueyod
ued> oym ajeu8isap

031 123l qo jJo 1031e31D MOTTY

*?a31nqrille ssadode
yoea a8ueyd> 031 13sSn MOTTV

BTI9111) UOTIEBNTEAF

*s3y8ty ss90o0y AJTpPOR 031 I3S[] MOTTV

uoT3lENnTRAg SS3J2Y

(d) IX 19Vl

:juawaxtnbay

104

*s1asn 213tdads 310 sueay
91T3Ud BPNTOUT 03 I3INqriIlie

) S 1 ssa22e s3itmiad pied pITIM
*s3Tnejap Jo 13s
aTqea8ueydun ue satrjrdads
- s/n IN walsg -- pailroddns 3oy
211dutg SS32O5ng Jjuawaytdu] uorlenteaqy

*I3Sn TenpIraTpul
Aq 10 weax £q saiy8ra
ssadde 3Tnejap LAjroradg

*3[nejyap jo
SOﬂu&Uﬂwﬁumﬂw I9sn MOT1YVY

BT133T1) UOT3IEN[EAY

*s3y8ty ssad’dy jo 3135 3I[neyaqg iasg 111oddng

UoTjIENnTRAY SS3DIY

(V) IX FT94VL

tjudmwazrtnbay

85
€))

5 #ﬁ%{c\u‘-v\] SRR O¢ Bt o]+ SN - = IR —
w.WQ o SR A%y Se- Aty Aot bo! o2 Sy £ AL aon-}l... ’, «-h 7 K

S

\q AR5

RErA) Y| |Aannnedn)

{'-’ ‘0" 'i'l' "

v

‘S P g,

! "(o

K kXr

k

T

¢;“

‘PIBO-PITIM pUER Buweu 3weu 13asn
L Iasn ‘pT weal JO UOTIBUTqWOD pue ‘weal “3122foad
w 9 S I SapnIouT XxBIUAS 2InqTille SSIDIY Uo [0I3UO0D SSIdIJe Iaseyq
*sati108a3ed pautrjap
wa31sfs UT STOI3UOD SSadde *STO0I3U0D SSadde
v S I SaysTIqel1sa Lyred1rienwolne waisLg JO 19s piepuels apraold
>TTdwtg sSsaddong 3juldwaiduy uotjenieayg BTI3]3TI) UOTIENTRA]

*£1032911q pue 3123alfqQp A13AFg I0J TOI3UO) SS3IJy 3prAoag :Ijuawairnboy

uotrlenteay sSsaddy (q) IX ATAVL

105

*28ueyd ad>10jua 03 sT003 *1001 FSdV yoea
- n/n IN 4SdV TTe Butatam-ai sairnbay 10J TOX1UOD SSadde apraold

*a8ueyd ays

£q paidajje syool sS4V I11® *STOJ31UO0D SS3Jde ppe 01
- n/n IN 03 uorjedTjrpow 1olew saarnbay 138euew uotriean3TIuod MOTTV
JT{dutg Ssaoong Juawartduy uoTjenieAy Bllei1d) UOTJIENn[EBA]

*s3y81y SS32dy MaN 3aieai) o031 i138euey uorieand3itjuo) molTy :3Iulwaxrrnbay

uorjenyeay ssadxdy (J) IX T4Vl

o7 .
¥ AMV me

Ty VAN, QIRXXEXN WX SORSNE AN XXSrrArd ANV | | RRNRNAR| (XS AR

] T s e e > U e o e

*pajuawardut *323foxd jo ajeas

134 310U -- SUOTSTA3II p10231 03 3a1iqns ut N-
Juaiind 8uUTISTIT ATIJ s32alqo Jo uotrstaaix e
S a B 9318312 TTIM 1001 XYOILNFANI juarind jJo BurliISTT aprAOIy
*u3azox3j aduo 323lqo
9z3313-un 03 arqissodur *3sanbax i13sn uo
S I - U33131TIMIaA0 s3123[qo0 uazoxj-uoy uotido 33TiIMm-13A0 apTAOIY
‘uotriedrjrpouw ‘patrjyrpoum
323(qo uodn uoTISTA3I MaU s123fqo uaym Butuotrstaaix
S I JTilewolne S3d210J puewwod FZIAYJ T[©IUSWAIDUT dTIemoIne IPTAOI(
sSSadJon Juawadu uoT3eNTBA BT19311) UOTlIEn[eaA
S S Tduy TeAy) Teay

‘suotstaay 311oddng :juawairnbay

uoTienyeagy uorsiadpy (V) IIX ITAVL

.\n
.‘.‘
AW Tt on T L 2 T3 TR AN S LT " e
"o P : v &y et 4, v 4 02 AP o’ s B A A = -
HACAY MR GRENET 1RR S| | GREGG | {2

*3123(qo yoes 103 patrjyroads
9q ued uorleTriea 3I[NeFap

107

*9313-qns ur s3idalqo
TIe 031 uoriedrJiaads

- n/n IN 218uts ® -- pajizoddns joy uorjetriea ay8urs L1ddy
*Aysieaaty
329fo01d ut [aaa1 4Lue ‘suotrietriea jo
v S I le paljtwiad siapeay uotrieriep ST2497 ardrignw 3i10ddng
dT{durS $SsSadong Jjuswarduy uorienyeay BTI33T1) uoTIEnyeA]
‘suotierxep 3i1oddng :jusawasxztnbay
uorienteay uorsiapy (g) IIX FT4VL
i S,
A 5
YOOI ' HNNNRLIN RNt~ s S T ARE s s T by s s RN | e ‘“ \sww“‘w.
‘ d - ol o ! ') v <t - bs o~ Y A "B o g 5 'D.\.d" a_py, J
-!.f\f -ﬂ.f.\!\ ARy 3 -.-«.\A.whwwwmu p .;\.\..\ MR <Y AL " aﬂ- ¥ .T&.ATAT.M\M .m 2 \\} UWA;.J) Q%Q”Vl»\b}\ AAALAA d

1

WNTNTATNY

139peay uoTieTIeA AI3AD

a S 1 Ul pImMOTTe uorieTIBA 3I[NneJa(
*UOTSTA3I 3U3DaJI

v S I jsow 03 s3[nejap A[[edriewoiny
*3[nNejap se pamoyle

- n/n IN UOTSTADI U231 3Isow AyfuQ

3T{duig SsoJong Juawardwy

UoTIen{eay

108

*uoTlEBTIEBA JO I[NEJIP
pautjap JI13sn moO[TV
*UOTSTAII
1uU3231 3souw
3yl jo 1ITneyap mollv

*I3quNU UOTISTAII
£qQ uorstA3d1 drjyro3ads

Jo 1[nejap morvV

BT133T1) UotTienyeay

*SUOTIBTEB)\ pUB SUOTISTA3Y 10J SI[nNeJ3([Pautryap-ias|

uotrienyeay uotsiapy (DJ) IIX J19VL

MOTTV :juawaxrnbay

! ‘1d dWes uT aq 3Isnw YUIT
10 artdwod 103 pasn sidalfqo

N I1® pue waisds 31381e) swa31sds 11381e3
m v S I swes 103 ai1e T4 e ur sidalqo [TV XTw eyl spuewwod 312alay
: *Lieaqyr1 weadoad
3 Jo ainqrille waisds 31a8i1ey *8utTyuTl
A yojeuw 3Isnu ewdeixd pue S8uryrdwos uaym
o v S 1 WALSAS uT parjyroads 3a8ie] I waisks 31981elr }29Yy)
% DTTdwIg Ssaoong Juswarduw] uoT3IeNn[EBAY BTI91TI) UOTIEBN[BAY
¥ *s329lqp paduir] pue parrdwo) jo AdouUd1sSTSUO) IINSUT :juawaxtnbay

uorienteay siaBiey ardrarny (g) IIIX J79VL

o
. o
.A ‘waisks ‘waisds
y 1981e3 a78urs e 103 s3dalqo 31981e31 £q 3in3dniis
', v S 1 suteluod Ljuo Aieiqtl weidoxd y 123foad utr sisalqo dnoiy
< ‘wexldoid adinos *S3a[qeaind>axa
JO WALSAS VHWOVYd UT PpaisTty pue sarry 123lqo
3 swa1sAs 1981e3 [[e SpioDdAI 103 swailsds 128i1e3
4 v S 1 ainqtiile siasdiel arqrieduwo) JO UOTIEDTJTIUIPT PI0IIY
2t1dutg S§s32d3ng Juawagtgduy uotrienyeay BTII91TI) uorienteay

, ‘waisfg 1981e] Aq sarnpoly dnouin :juawartnbay

‘ uorienyeag sisdiey ardrarnw (v) ITIX 314Vl

a

*ainqrilie
si1981e3” a1q1aedwod
UT P31STI] 31e swaisfs 138ie3
yioq 3T s,7d u33amiaq sidzafqo
S I Jo 8utieys smoTTe 1001 TAINDOV

*1981e] TERUOTATIPPE
ue ppe 031 parjrpow 3aq 3Isnu
3713 9dinos -- uorielrdwod
e 103J si1a8iel [1e Aj1d3ds
S 1 031 i9sn smorTe ewBeid KWILSES

dr1duTts

Ssaoong Juawatduy uoTienieAq

*sdnoa8 ardrarnu
utr zeadde o031 1dalqo
1981e3 apdrafnw moOTTV

*123lqo
918utrs e uo s (I
1881e31 aydratnu 1i1oddng

B1J9311Jd) UOTIEN[EA]

*s3138a1e] ardrirny uo pasp aq o3 123alqp o18utrg moylv

uorienyeay s3d3Bae] ardragny (D) IIIX FT4VI

tjuswaxtnbay

110

*19sn
£q Arrenueu palerndrtuew

2q Isnw uolleIIOSSE UL *s323alqo paduaiajaiz
- n/n IN punoj saweuyled -- pailroddns 30y 9A3TI391 031 [001 3pTAOIY
S11duig SS920ng 3Juswayduwy UOTIEBNTEBAJ BTJ193111) uotaengyeay

*s32alfqQ 19yip 01 uorie[ay uo paseg si123alqp sadT139y :3juswarrnbay

uotienteag A3tr(rqeades] (d) AIX FT4VL

‘payoeIl
aq 3jou TTTm 2weuyied *£10312311p
utr a8ueyy -J19sn £q uaatsd 10 2uweu ut a8ueyd 4q
se saweuyjed piodax Afuo paida3jje 3ou sidalqo
- n/n IN suorjeIrd’osse -- posixoddns o) uaamiaq drysuoraieiay
*s323lqo paierax 01
*$3TI01231Tp pue sidalqo saweu yied suieluod
a S I 231891 03} pPasn SUOTIBIDOSSY jJeyl aInqrilie ureluUTEl
>tiduts Ssaosong Jjuawayrduy uotienyeAy e1lo31Jd) UOTIEBNTEAY

*s3123fqQ usamilag sdrysuorie[ay pIoday :3judwaxrnbay-

uotienyeag A3T7TqEadRI] (V) AIX A7dVL

5 .~
.-\-\ @ .tf-opﬂo
.hn\ L N

v v eiege et NS NEEER . - t.e oGy o Yoy R R S TR ** " LT n ke ceege e ciruve -
N b 5 A AN Soies XX ukﬁ:kﬁﬂﬂ. EACAANATX ,;ﬂmnp_@fekaéf XXAXS 1) | R

- e e ot

Ed

bl B]

P

gt Bk S Bt Tt Tk Sl Bt R R

I ¥

A ok i
LA

—r
AL

I]

<

cAaN e

- iy

."-

-

i ad

Al K A

LB A g £

A 2 DA

4
™

AR A

P B A"

‘4 UT SiauTeluod [I®e
JO UOTSTA®I 3IuaI1Ind 3UTISTT

™~
- S a 9TTJ s21ea1d 10031 [LOHSJVNS -
-qq 322foad ur sidalqo 171®
JO UOTSTAd1 13uaxind JuTisST] *3ouaiajax a18urs 4q
- S a 911J s21ea1d 10031 XYOLNIANI aur[aseq 31TIUSd AJTIU3P]
-aseqeiep 12aloid
01 329fqo ppe o3 TIVLISNI osn
1snu 12aut8ua pue MmN 3uTsn ‘saoedsyionm
si12alqo 103 aoeds 3aijedo1ye s, 193uTdu3
- S a 1snu iaSeuew uoTieINdTJUO) woIXj Isea[ar [0IIU0)
>T7dutg SS3Jlong Juawaidw] uoIjenieaAy B1l191311) uoTiENnTEAj
*JuUTCq 90U3I13JIY PIAXTJ UTBIUTEY tquawaxtnbay
uotienyeay autriaseg (V) AX 3I1dVL
N ... 0 . . - «n
' “’ @) {‘ .
- OV XN, LACORG BIYNK SRR AR MG ORRIRN AR | AR A

Ny |

Rt

LT
P Y

-~

NC S ME S -

-

-

RNy

T

Lt S

ACASEAE N

SR ANy

.

L w,

-

S YCI aA aiy

EAEAKE

*1d 30 1S3l yitm
juaistsuod 3jou 123[qo uayam

d S I 19s ainqrijle a7rdwodar paay
“1d
01 pappe 12alfqo 3JT partrdwod *autraseq
-91 3q 031 2aey TITIm s3d3lqo uT s3tun payrrdwod
- S a jeym I3sn STI93 [003 IDVAKI JOo £DJU9]1STSUOD UTEIUTRY
*gq 3129foxd ays
ur 3193fqo ue o1 spew uaaq
aaeYy 3Byl Ssadueyd TIe JO
- s/n a 8utristr ® saonpoxd STTVISNI LST
*papiodaix
jou ST 28ueyd I0J UOSEdI
-- gq 323foxd o3 329fqo
patjIpow SuTuiniax IIsn ‘sautTaseq 2123louid
- s/n a JO 23ep pue 3JWBU SPIOIAIXI TIVISNI JO UOTIIEDTJTIpoOW I03ITUOY
*aseqelep
323loxd utr 323lfqo 8ut8uey>d *suryaseq 123loaxd
- S a wo13j 3auokue siuaaaxd YHOTWI JO UOTIEIDTJTIpOW IDTIISIY
o11dutg Ssaoong 3Juawatrdu] UoLjenieay B1I9111) UOTIEn[eAq
‘suryaseg 129foxg o1 saBueyn 1oIrlu0) :juawarrnbay
uorienyeay auryaseqg (g) AX ITEVL
...-.(v ",
O S
i e R Syt R R TR T s TR

113

Y

A

o
»

DA YL QLSRN SN

SRR LRt

2t

o

»

a

- LYY
NS

n\ -\\ I.L.

e
al et

.

. Ta e ot
s *,
Ny 1&‘;’.‘

T TSN

‘dursseq
pasodoid 3o
- s/n IN *palrxoddns a0y snjels (eaoidde pioday

‘aurTaseq y
mau 103 sid3alqo
- s/n IN *paiaoddns 30y 8ut8ueys L3ytauapg ‘

*sadueyod
- s/n IN *paixoddns 10y paaoidde jo 8oy1 uteiutepy

STTdutS SS92d5ng Juawardwy] uotraienyeay BTI931T1X) uUOT3IEnieAy

"saurTaseqg 123foxg 031 sa8uey)y sssdoxg :iusauwaitrnbay

uorjenyeay auriaseg (J) AX dT9VL

*S2WEU Yd2JE3S pue Siaqunu :
SWNTOA JO X3pPUT TEBOUBW : :

ulejuTew 3ISNW JIOIRIISTUTWPE . sade) ;

- s/n IN wajisks -- pailaoddns 30\ dnyoeq jo xapulr utlelUTIE) X
*S97TJ TENPIAIPUT 10 9913QnS X

‘9seqeiBp 2ITIUD IDONIISUODAI *dnyoeq E

01 pasn aq ued -- ade3j woay woiJ BurTaseq R

- S -1 aseqeiep jo Adod> spear FYOISTA J0 9seqeB3IEpP IONIISU0IIY o
]

*s323afqo autyaseq .

jJo 1sT1 ® 31daodoe 3jo0u .
saop Inq ‘S3[TJ TENPTATPUT .

10 §33114ns ai1ITIUd *aur1aseq m
- n/n IN s2103Ss JIWSNVYL -- P21xoddns 30| jo dnyoeq 311WIad 7o) VY
*adey o3 309fo0ad *oseqelep jo - W
- S -1 Jo 99i13qns satdoo FIYILIA4 a3iiqns jo dnydeq 3ITWIady o
* 9NHOJ A4 : :
10 JNOVg 3ISel d0UTtSs *dnyoeq 3se] 22UTS
- S -1 pa8ueys sapou satdod 9NHOdNY s928ueyd> jo dnyoeq 11TWIIY]
*sdey o3juo *aseqelep
- S -1 aseqejep 323load sardoo Jn)Hvd si13ua jo dny)oeq 3JTwIId
DITdWIS SS920NnG§ Juawarduj] UOTIENTEAY BTI33TJ) UOTlIENTRAY

*dn)joeg aury-330 utejutrey :3juawaarnbay

uotienyeag AITTTIqeTIay (V) IAXY 3F19VL

A

Py P i A PXAA ., (OO, 2 N MG ELM bx AL - ﬂ#ﬂ(-........ad.r e 5\.\\\ﬂn P — e P e _ oS
e - - 2% 3 P . N . d . > o L 2 o R) = - " * L - - N

2 o 4 WAL

d
ST1dutg

*a8ev101Ss
2UIT-JJO I0J dwWeU Yyd>ieas pue
suntoa adel sapnidouT -- IUTT

uo pautTejureW Ssajnqrilie
n/n -1 3O 31STIT paurjap waisdg

*aoeds JSTp
S8utaariiax AJ[edT3RWOINE
*s3123fqo aaatTilax
pue 2101s o1 1o3eiado waisis
S -1 mOTTe STOO03 NITTIOY PU®B LNOTTON
*3UTT-UO }Ieq
10 aut[-jJjo paddems 1juea
L2yl saaixiqns 10 sidalqo
JO 3ISTI] PudsS 03 SI9SNn MOoT[e

S I ST003 JATIHOYVNN Pu® FATHOHAV

SSeoong Jjuemwayrdu] uotienjyeay

‘outr-330

pa210o1s si2afqo jo

sainqtilie patrjyroads
‘aseqejep utr ‘utrejuley

*autry~330 sizalqo
pasn Ariuanbaxjur
sA31313131

pue 2103S 01 SIasn MO[TY

e112111) uotrjen(eAq

*a8e103g Liejuawayddng SurT<3FJ0 uUTEBIUTIEYK mucmsm»ﬁzuwm

uotienyeay AL3rTrqerray (4) IAX T19Vl

116

-

i Sl Aad S

Ewa

-y

Lot o5 o8 o

T

H_i ~_a -

L % 20 ol

T

ol d
Lol

W
-

FEITVETRS

LM R D R R g

Bl

Pl

TRV LB, e EE

LS LV

n/n

S

*91qtrssod
ITTIS 1N0T704 -- pairarap
9q jou ued 333fqo ‘oiaz ueyl
I 123318 ST junod UOTIBATI3D uaypm

*s323lqo asinos uo paidajje
1unod uorleRATISP ATUO
‘paizoddns Buroery piemiog L1up

=

*siojeliauad
M3U 3931B31D UEBD 13sn
-- s101e13u38 se parjisse>
I S10031 103 papr0331 ATTedriewoiny

>Tiduts

CEEFLT

juawarduwy uotrienieay

*S3sTxa 323fqo
paatTi3ap se 8uog
se s323[qo indurt
JO UOTIIT[IP JUdAIIY

*SUOTIBATIIP
3o 3utoeil pieamyoeq
pue piemioj 3ioddng

*123lqo
91e315 031 pasn 1007
pue si323fqo indur piroodsy

BTI33TI) UOT3En[eA]

*£1031STH uoTIEATISQ UTBjUTEY tluduwaxtnbay

uorienteag A3ITTIQEITaY (J) IAX FT4VL

117

. *sauo paitnbai waisfs aumos *s193sn

K 1dadxa sajinqiiiie jo anyea waisds £Lq patrjrpoum
. q S I a8ueyd 03 13sn smolTe YLLIVHD 3q 01 s3inqrilie ItwIdyg ©
. *ajeradoadde -
.- *fyfecriewoline paurelIuUTEW uaym AJred>Tiewmolne
’ v S I S3inqTIlie waisAsS pautrjap-a3id S31NGTII3E UTBIUTEY
X *sajnqriiie mau *S33nqTIIIE pPAauTIIP
N a S I 9318312 031 SI9sSn smoTtr®e JILLIVHD I3sn Jo uotitrppe 110ddng
\ *£10323x1p
- pue 131d>afqo Ki13aa
_ v S I ‘papraoid A7redtiewoiny I0J S93Inqriiie IprTaoly
JTTdUWIS $$322ng Jjuawardujy uotrienyeaAaqy BTI23T1) uotTiIenyeaAq]
. *sainqri3i3y 3123fqQ utejurey :3juawaxtnbay
3 uorlenyeag 3Inqriiiy (V) IIAX IT19VL

e vy MR R b ANl W G el IS TR o AP
PR RS ~.2 2 -.I.\Jﬂ.-\ & 4%y .. OO o
Loy 2y 5, 4, Vg ..Q... ..“-a- 3 \m .- -V.\‘\l\-l .u \.c!f.,-\ -m\-'.‘-‘ﬂ. .\.n\ m-..\-«:-.

™

i T T)

—~w——a
-t Lt v

.—'I id

-

LAl N

L

.

-,

A

7

LA

T &
AT

LAY

Cl

LA A et

Al RAR

)

O SR

v
-

A

a/n

S

*UOTIBATIAP
e JO 1INS3a1 B Se pajeaird
IN suotierdosse 103J paijioddns Ljup

*sanyea UOTIBIDOSSE
I 28ueyd 03 13sn smoTI® SSVHD

*aweu yied ut sadueyd
£q po31d293Je 10U IDUIIIIII
ainTosqe Butpnyiout wWaisds £q
pautejuTew S1Ie SUOTIBATIIP
1 uTejuTew o031 paIsn SUOTIIBIDOSSY

*SUOT3IBTIOSSE
1 M3Uu 331B3I1D 03 I3sn SMOTI® SSVH)

1 *afqerIeae Ajledriewoiny

>Trdurg

S§saJong

juawagrduy uotjenyeAq

*s32alqo

p2duaiajaxr jo sauweu

yaed ur sadueyd

£q paidajje 1o0u
SUOTIJ1EIDO0SSE JBYY IInsuj

*s13sn
waisAs £q patjrpou
9q 031 SUOTIBIIOSSE JTWII]

ajetridoadde
uaym Lrredtiewoine
SUOT1BIJ0SSE UIBJUTEY

*SUOTIBTIDOSSE paurjap
19sn jo uoriippe 1i1oddng

*£1012311p
pue 123lqo ALi1aas 103
SuoTjeTIJ0SSEe 3PTAOI{

BTI1231J) UOTIBN[EAY

*suoraerdossy 123fqp ureiutey

uotrienTeay 3InqriiIly

(d) IIAX d179V1

tjuawaxrnbay

119

1

3

N

M

a®

s‘,q‘si'

-t

SR

R

il R

Ly

¢ AR A R P RN

[R S N A -c\— -4 2L ? 7, wu ‘ .-..!l-.v!.h-\ -

‘paijzoddns
TTI24 J0u 3Inq ‘arqelIeAY

*ST0031 SV Mdu
JOo siapIIng 031 3[qETTIEAE 3i®
s[oo01 juawadeueuw uoTjleETIJIOSSE

*ST003 SV Mmau
JO S13pTINq O3} I[qEIIERAR 3iE
S 1 s1001 3juawadeuew ainqriiie [TV

Ssaoong Juamwardu] uotlenfeay

*S$3[TJ puemwWOd I0J
310ddns uotrjeroosse
pue 3ajinqrilie apraoxyg

*$7001

pappe-i1asn 10}

310ddns uotrietrdosse
dTiewolne apraoiyd

*s1001
pappe-i13sn 10]
310ddns aingqriiie
dTieWOINE 3PpTAOI{

BT1I21td) UOTIEenfeay

‘uorsuedxy 3SdvV 31oddng :aquawmaxinbay

uorienteay 33Inqriiiy (D) IIAX FT1dVl

e g
- .-in-

LAY

-
-

e R RN e VN VN

n.\'

YCSER LG LGN

AN

o

A

.

3 ;
g v
d %
- z
g
", 73
W :
. A
: :
3 PX
w. s
. ’,4
. z
¥ v
. v’
", v,
. 2
? \‘ 13
", ‘A
L] f ‘
.». \l
3 ’
!“ \l
; *3[TJ puewWWOD ~
UT pueBwWOD IXdU O3 P} -

8q 3jouued puewwod SSV [ST *s7001 JSdv o031 andut
_ Jo s3Insaxr -- 3deJIajutl S SUOTJIBIJOSSE
. - n/n IN 100d sapraoad a8enB8uey pueuwo) Jo asn 3ji1oddng
3 *paiioddns
' jou st uotieirado 3123yas *3aduaiayaix
", Inq ‘@azxiqns ut sidalqo anTea ainqriiie 4q
. ITe 10J @inqtriiae 2t13roads ?9131-qns ut sidzalqo
; - n/n IN B ISTT TITIM IST -- pailioddns 3oy TI® JO [BA3TI313aX 3ITWIa{
. 2TTdutS $s925ng 3Judwartduw] uotienyeaqy BIJX33TI) uotienteaj

‘anyep 21nqTI3ly £q TeEA9TI3I9Y 31oddng :3juswaatnbay
y uotrienyeay 93INQTIIIV (Q) IIAX FT9VI
,.’.-nu. ~l"hu.

£ S S
e MOSHED DVYIIVY AT AN XN MASSRAA | CORAART. | I e, | S

to?
XN
e
:" ::.' R
- "0 I_‘*.'
: BIBLIOGRAPHY
AN
R
ity Bersoff, Edward H., et. al. "Software Configuration
e Management: A Tutorial," Computer: 6-14 (January 1979).
£ ' Computer
%
Buxton, John N. and Larry E. Druffel. Requirements for an
) Ada Programming Support Environment: Rationale for
N Stoneman," IEEE Computer Society's 4th International
Yo Computer Software and Applications Conference. 66-72,
é& NewYork, NewYork, IEEE, October 1980.
Ty
o
Department of the Navy. A Software Engineering Environment
535 for the Navy. Report of the NAVMAT Software Engineering
- Environment Working Group. March 31, 1982,
e fy
=Y Eanes, R. Sterling, et. al. "An Environment for Producing
A3s Well-Engineered Microcomputer Software," Proceedings of
- the 4¢th International Conference on Software
fxﬁ Engineering: IEEE, 386-398 (1979).
st
ﬁ:. Howden, William E. "Contemporary Software Development
Y Environments," Communications of the ACM, 25 (5): 318-
Wil Q 329 (May 1982).
N * Huff, Karen E. "A Database Model For Effective Configuration
;{ Management in the Programming Environment," Proceedings
"t of the 6th International Conference on Software Engin-
e eering: IEEE, 54-61 (1981).
\‘4
Intermetrics, Inc., Ada Integrated Environment I Design
N Rationale, Prepared for Rome Air Development Center,
e Intermetrics, 15 March 1981.
e,
fbﬁ McCarthy, Rita. "Applying the Technique of Configuration
s Management to Software," Tutorial: Software
. Configuration Management. 42-47/ New York: IEEE
Y, Computer Society, October 1980.
£
*&Q Metzger, J.J. and Dniestrowski, A., "PLATINE, A Software
tﬁq Engineering Environment," 1983 Softfair -- A Conference
:;: on Software Development Tools, Techniques, and Alterna-
s tives. 193-199. Silver Spring: IEEE Computer Society,
z:‘ R .
%
ﬂgh Notkin, David S. and A. Nico Habermann, "Software
i Development Environment Issues as Related to Ada,"
31: Tutorial: Software Developments. 107-137. New York:
IEEE Computer Society, 1981.

. DR
.Jh_ﬂuMAML;°:,;u\ﬁJ‘

Y -

«":‘ c:\".'n' Ly
DA -"\ P

A 4

el
o,

s,

; NN
RIRIMCLILH | Ay
y ‘-“‘: \"‘: Pl A

1@~
- SLNTAEY

)
Y
l.'i

NN g

2

.." - e

Searle, Lloyd V. An Air Force Guide to Computer Program

Configuration Management. Prepared for Deputy for Com-
mand and Management Systems, Electronic Systems Divi-
sion. Santa Monica, CA, System Development Corporation,
August 1977,

SofTech, Incorporated. ALS VAX/VMS Target Users Reference

Manual, November, 1983a.

————— . The ALS VAX/VMS Textbook, November, 1983b.

————— . An Introduction to SADT Structured Analysis and

Design Technique, Waltham: SofTech, November, 1976.

"Stoneman," Requirements for Ada Programming Environments,
Department of Defense, February, 1980.

Stenning, Vic, et al. "The Ada Environment: A Perspective,”

Tutorial: Software Developments. 36-45. New York: IEEE
Computer Society, 1981.

Stuebing, H. G. "A Modern Facility for Software Production
and Maintenance," IEEE Computer Society's 4th Inter-
national Computer Software and Applications Conference.
407-418. NewYork, NewYork, IEEE, October 1980.

Texas Instruments, Inc. Ada Integrated Environment III
Computer Program Development Specification. Lewisville,
TX: Report prepared for Rome Air Development Cencter,
RADC-TR-81-360, Vol II, (December 1981).

Wasserman, Anthony I., "The Ecology of Software Development
Environments," Tutorial: Software Developments. 47-52,
New York: IEEE Computer Society, 1981.

Wegner, Peter. "The Ada Language and Environment," ACM
SIGSOFT, Software Engineering Notes, 5 (2): 8-14 (April
1980).

Zucker, Sandra, "Automating the Configuration Management
Process," 1983 Softfair -- A Conference on Software
Development Tools, Techniques, and Alternatives. 164-
172. Silver Spring: IEEE Computer Society, 1983.

123

- - - [J - n-’--_ o~ .Q' L} .'. ----- e " ’..-'. e .'.‘... ‘.,-‘_"'_. RO AR e Celes RSN

A,

Vita

Mark S. Orndorff was born on 25 May 1955 in Arlington,

52; Virginia. He attended Washington-Lee High School in
'st Arlington and graduated in 1973. In September of that year,
N he enrolled in Brown University in Providence, Rhode Island.
§§§ After one year of study and a year employed by Western
'5}3 Electric, he transferred to the University of Virginia in
}ﬁu Charlottesville, Virginia and subsequently graduated with
gxg High Distinction, receiving a Bachelors of Arts degree in
S:E Environmental Science in May 1978. After graduation,
Egﬁ Captain Orndorff was commissioned in the U.S. Army and
i:ﬁﬁ attended the Signal Officers Basic Course at Fort Gordon,
-:; Georgia. He was then assigned as a platoon leader in B
53\ (:5 Company, 5th Signal Battalion, 5th Infantry Division
i;g (Mechanized) at Fort Polk, Louisiana. While at Fort Polk,
E:g he also served as a platoon leader in A Company and as the A
) Company Commander. After leaving Fort Polk, Captain
'*xé Orndorff attended the Signal Officers Advanced Course at
iéf Fort Gordon, Georgia and the Teleprocessing Operations
’1; Course at the Air Force Institute of Technology at Wright
<7,
;E: Patterson AFB, Ohio. After completing the Teleprocessing
;525 Operations Course, he entered the Air Force Institute of
+*i Technology School of Engineering.
353 Permanent address: 883 N. Jefferson St.
," ::’: Arlington, VA 22205
~ 5
%o
o 144
"’1.¢
e

O T I U S e NI
oo, R G ARNC WA . MLMMAAJ o 444

‘o e A -.,‘.' R

S
-

LSS

" .
afaf. PN
r.“r_";b.a,s{
s s L

”
o

ARy St Ml o g~
QT

Ll

o~

»

"- ". ,. "- "~ “

ANE G Y

I.}

A . ‘ .{' 4'. ot
1 " .'I".‘..-. ¥ .:'.‘\ l.. l.. .\l

gt

)

.
LY

”~ j"‘. ot
4.'&.’&" ’."'~ Wttt

'&-4—4-

»
o, @

SECURITY CLASSIFICATION OF THIS PAGE

AP R LT AT AT e N TEdT N e TR T TS

SN TS TR TS e TS AN N R

REPORT DOCUMENTATION PAGE

I e *?I

1a. REPORT SECURITY CLASSIFICATION

UNCLASSTFIED

1b. RESTRICTIVE MARKINGS

2. SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public releasc;

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

distribution unlimited.

4. PERFOAMING ORGANIZATION REPORT NUMBER(S)

AFIT/GCS/EE/84M-1

5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL
AFIT/ENG (1f applicable)
Air Force Institute of Technojogy

7a. NAME OF MONITORING ORGANIZATION

6¢c. ADDRESS (City. State and ZIP Code)

Wright-Patterson AFB, Ohio 45433

7b. ADDRESS (City. State and ZIP Code)

8a. NAME OF FUNDING/SPONSORING
ORGANIZATION

8b. OFFICE SYMBOL
(1f applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c. ADORESS (City, State and ZIP Code)

10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT
ELEMENT NO. NO.

TASK
NO.

WORK UNIT
NO.

M EVETUAY 8RS A GPBISYEY Configuration Manage
: ; ; e

ent

12. PERSONAL AUTHOR(S)
Orndorff, Mark Stephen

13a. TYPE OF REPORT 13b. TIME COVERED

14. DATE OF REPORT (Yr, Mo., Day) 15. PAGE COUNT

~4 MS THFSTS FROM 1o 1984, MAR, 7 132
16. SUPPLEMENTARY NOTATION
TR —— CONFTGURATION MANAGEMENT : "ADA, SROYM RE> BN 1B MENTS
& Py SOFTWARE ENGINEERING ENVIRONMENTS, APSE, SOFITWARE
- MAINTENANCE
19. ABRTRACT (Continue on reverse if necessary and identify by dlock number)

This investigation studied the task of configuration management of computer

software systems.

perspectives of project management and project engineers was developed.
definition was used to conduct a requirements analysis of the support required in
automated programming environments for the configuration managemcnt task.

these requirements, evaluation criteria were developed that werc appropriate for the

First, a detailed definition of configuration management from the

This

Based on

~ - -

20. OISTRIBUTION/AVAILABILITY OF ABSTRACT

uncLassiFiep/UNLIMITED (X same as reT. O omic users O

21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED

"220. NAME OF RESPONSIBLE INDIVIDUAL

EDITION OF 1 JAN 73 IS OBSOLETE.

22b TELEPHONE NUMBER
tInclude Arca Code)

513-255-3576

22¢. OFFICE SYMBOL

UINCLASSTFTED

SECURITY CLASSIFICATION OF THIS PAGE

A \‘ NOER \',\;.\:_\ Y '.‘.‘.‘.\;;.',\: N

o

AT SASA AL WA e A AT/ S A RO A A AT REACAOMBUCASABRAL A ORI S R A O A
\:-\':.'_-An..n-----»-- - RN . e . —1
B
e UNCLASSIFIED
E’g ECURITY CLASSIFICATION OF THIS PAGE
e m
N . . , . - .

t,-:_, evaluation of configuration management tools designed to satisfy the 1980 Stoncman
» Vo
Nl
I requirements document. These evaluation criteria were used to cvaluate the November
e —
(N
1983 release of the Army's Ada Language System. :
The requirements and evaluation criteria developed in this thesis are designed
to provide designers and purchasers of Ada Programming Support FEnvironments (APSE)
with the tools necessary to determine the effectiveness of an APSKE implementation in
supporting the task of configuration management of large softwarc projects developed
for embedded computer systems.
;’:.- Te
=
A
L
q
.
3
L
4
‘
!
!
.
SIS
v \
UNCLASSTHFTE b
™
SECURITY CLASSIFI<ATION OF THIS PAGE »

-

S te Tt ‘?’ -~ C *..u

P T T I I P T - . P . . N PR N e
A CELUTE (R X SRR AN . ‘ NS PO

